Диаграмма состояния al mg. Диаграмма состояния системы алюминий – магний (Al-Mg)


Короткий путь http://bibt.ru

ДИАГРАММА СОСТОЯНИЯ АЛЮМИНИЙ - КРЕМНИЙ. ДИАГРАММА СОСТОЯНИЯ.

ДИАГРАММА СОСТОЯНИЯ

диаграмма равновесия, фазовая диаграмма - графическое изображение соотношений между параметрами состояния физико-химической системы (температурой, давлением и др.) и ее составом. По диаграмме состояния можно установить, например, температуры начала и конца фазовых превращений, химический состав фаз. Диаграмма состояния широко используют в металловедении.

Иванов В. Н. Словарь-справочник по литейному производству. - М.: Машиностроение, 1990. - 384 с: ил. ISBN 5-217-00241-7 , 1990 .

ДИАГРАММА СОСТОЯНИЯ АЛЮМИНИЙ - КРЕМНИЙ

диаграмма, показывающая фазовый состав и структуру сплавов с различным содержанием Аl и Si (рис. Д-4). Si не образует химических соединений с Аl. Растворимость Аl в Si очень мала; поэтому можно считать, что в системе Al - Si присутствует чистый Si. Растворимость Si в Аl при эвтектической температуре равна 1,65%, при нормальной - около 0,05%. Эвтектика содержит 11,7% Si и состоит из твердого раствора α и Si.

Рис. Д-4. Диаграмма состояния алюминий - кремний

Al-Mg (Aluminum-Magnesium) J.L. Murray The equilibrium solid phases of the Al-Mg system are (1) the fcc (Al) solid solution, with a maximum solubility of Mg in (Al) of 18.9 at.% at a eutectic temperature of 450 C; (2) the cph (Mg) solid solution, with a maximum solubility of Al in (Mg) of 11.8 at.% at a eutectic temperature of 437 C; (3) the b compound of approximate stoichiometry Al3Mg2, with a complex fcc structure (at low temperature, b transforms martensitically to another structure that may be a distortion of the b structure, but the equilibrium phase relations have not been investigated); (4) the line compound R (often designated e), of composition 42 at.% Mg; and (5) the compound g, with the aMn structure (at 450 C, g has a maximum composition range of approximately 45 to 60.5 at.% Mg, but the ideal crystal structure has the stoichiometry Al12Mg17 at 58.6 at.% Mg). The phase boundaries in the assessed phase diagram were obtained from thermodynamic calculations, with the exception of the single-phase b field. For the b phase, a line compound was used in the calculations, although b is known to exist over a range of composition. The present diagram is based on a review of the work of , , , , , , [ 45But], , and . Supersaturated (Al) solid solutions are readily obtained, and decomposition proceeds by the formation of spherical GP zones. A possible spinodal ordering mechanism has been proposed for the transformation. Continued decomposition of the supersaturated solution occurs by the formation of a nonequilibrium phase denoted b› and a solid solution with less Mg content than the equilibrium, and then the formation of the equilibrium b phase. By rapid quenching techniques, the solubility of Mg in (Al) can be extended significantly beyond the equilibrium maximum solid solubility. extended the solid solubility to 36.8 at.% Mg; in a 40 at.% Mg alloy, the b phase was obtained. solidified alloys of composition 25 to 55 at.% Mg at cooling rates ranging from 102 to 108 C/s. At the lower cooling rates, b, g›, and g were formed; at higher cooling rates, a new phase, denoted f, was observed. [ 78Sur], using a "liquisol" quench, found that a metastable solid solution and a metastable phase appeared in a 30 at.% Mg alloy. Based on the structure, the new phase was identified as having the stoichiometry Al2Mg. found only a, g›, or g in splat-cooled specimens of composition between 0 and 63 at.% Mg, and no b or R phase. Specimens were fully (Al) up to 38.35 at.% Mg, beyond which the g› phase appeared. 33Sch: E. Schmid and G. Siebel, Z. Phys., 85, 37-41 (1933) in German. 35Hau: J.L. Haughton and R.J.M. Payne, J. Inst. Met., 57, 287-298 (1935). 35Zak: M.I. Zakharowa and W.K. Tschikin, Z. Phys., 95, 769-774 (1935) in German. 38Hum: W. Hume-Rothery and G.V. Raynor, J. Inst. Met., 63, 201-226 (1938). 38Kur: N.S. Kurnakov and V.I. Micheeva, Izv. Sekt. Fiz-Khim. Anal., 10, 37-66 (1938) in Russian. 39Sie: G. Siebel and H. Vosskuehler, Z. Metallkd., 31(12), 359-362 (1939) in German. 45But: E. Butchers and W. Hume-Rothery, J. Inst. Met., 71, 291-311 (1945). 64Luo: H.L. Luo, C.C. Chao, and P. Duwez, Trans. AIME, 230, 1488-1490 (1964). 70Ban: J. Bandyopadhyay and K.P. Gupta, Trans. Indian Inst. Met., 23(4), 65-70 (1970). 73Gud: V.N. Gudzenko and A.F. Polesya, Izv. V.U.Z. Tsvetn. Met., (4), 144-148 (1973). 78Pre: B. Predel and K. Hulse, Z. Metallkd., 69(10), 661-666 (1978) in German. 78Sur: C. Suryanarayana, S.K. Tiwari, and T.R. Anantharaman, Z. Metallkd., 69, 155-156 (1978). 79Sti: W. Stiller and H. Hoffmeister, Z. Metallkd., 70(12), 817-824 (1979). Published in Phase Diagrams of Binary Magnesium Alloys, 1988, and Bull. Alloy Phase Diagrams, 3(1), Jun 1982. Complete evaluation contains 4 figures, 15 tables, and 112 references. Special Points of the Al-Mg System

Цель работы: изучение диаграмм фазового равновесия и фазовых превращений в бинарных сплавах алюминия с другими элементами.

Необходимое оборудование, приспособления, инструмент, материалы: муфельные печи, твердомер ТК-2М, образцы дуралюминов, стенд «Микроструктуры цветных сплавов», металлографический микроскоп.

Теоретические сведения

Алюминий является важнейшим металлом, широко применяемым для изготовления разнообразных алюминиевых сплавов.

Цвет алюминия серебристо-белый со своеобразным тусклым оттенком. Кристаллизуется алюминий в пространственной решетке гранецентрированного куба, аллотропических превращений у него не обнаружено.

Алюминий имеет малую плотность (2,7 г/см 3), высокую электропроводность (составляющую около 60 % электро-проводности чистой меди) и значительную теплопроводность.

В результате окисления алюминия кислородом воздуха на его поверхности образуется защитная оксидная пленка. Наличием этой пленки объясняется высокая коррозионная стойкость алюминия и многих алюминиевых сплавов.

Алюминий достаточно стоек в обычных атмосферных условиях и против действия концентрированной (90-98 %) азотной кислоты, однако он легко разрушается при действии большинства других минеральных кислот (серная, соляная), а также щелочей. Он обладает высокой пластичностью как в холодном, так и горячем состоянии, хорошо сваривается газовой и контактной сваркой, но плохо обрабатывается резанием и отличается низкими литейными свойствами.

Для прокатанного и отожженного алюминия характерны следующие механические свойства: в = 80-100 МПа, = 35-40 %, НВ = 250…300 МПа.

При нагартовке прочность алюминия повышается, а пластичность снижается. Соответственно по степени деформации различают отожженный (АД-М), полунагартованный (АД-П) и нагартованный (АД-Н) алюминий. Отжиг алюминия для снятия наклепа проводится при 350…410 С.

Чистый алюминий находит разнообразное применение. Из технического алюминия АД1 и АД, содержащего соответственно не менее 99,3 и 98,8 % Al, изготовляют полуфабрикаты – листы, трубы, профили, проволоку для заклепок.

В электротехнике алюминий служит для замены более дорогой и тяжелой меди при изготовлении проводов, кабелей, конденсаторов, выпрямителей и т. п.

Важнейшими элементами, вводимыми в алюминиевые сплавы, являются медь, кремний, магний и цинк.

Алюминий с медью образует твердые растворы переменной концентрации. При температуре 0 С растворимость меди в алюминии равна 0,3 %, а при температуре эвтектики 548 С она увеличивается до 5,6 %. Алюминий и медь в соотношении 46:54 образуют стойкое химическое соединение CuAl 2 .

Рассмотрим состояние сплавов алюминия с медью в зависимости от их состава и температуры (рис. 1). Линия CDE на диаграмме представляет собой линию ликвидуса, а линия CNDF является линией солидуса. Горизонтальный участок линии солидуса NDF называется также эвтектической линией.

Линия MN показывает переменную по температуре растворимость меди в алюминии. Следовательно, линия MN является границей между ненасыщенными твердыми растворами и растворами насыщенными. Поэтому эту линию часто называют также линией предельной растворимости.

В области I любой сплав будет представлять собой однородный жидкий раствор алюминия с медью, т. е. AlCu.

Р
ис. 1. Диаграмма состояния системыAl–CuAl 2

В областях II и III сплавы будут находиться частично в жидком и частично в твердом состояниях.

В области II твердой фазой будет твердый раствор меди в алюминии, а жидкой – жидкий раствор алюминия и меди, т.е. Al(Cu) + (AlCu), если твердый раствор ограниченной растворимости меди в алюминии условимся обозначать как Al(Cu).

В области III жидкой фазой будет являться также жидкий раствор алюминия и меди, а твердой – металлическое соединение CuAl 2 , т. е.
+ (AlCu). Индекс «I» (первичный) показывает, что CuAl 2 образовалось при кристаллизации из жидкого состояния.

В остальных областях полностью затвердевшие сплавы будут иметь следующее строение:

В области IV – однородный твердый раствор меди в алюминии, т. е. Al(Cu);

В области V – твердый раствор меди в алюминии и вторичный
;

В области VI – твердый раствор меди в алюминии, вторичный CuAl 2 и эвтектика, т.е Al(Cu) +
+Al(Cu) + CuAl 2 ;

В области VII – первичный CuAl 2 и эвтектика, т. е.
+Al(Cu) + CuAl 2 .

Эвтектика этих сплавов представляет собой особую механическую смесь чередующихся мельчайших кристаллов твердого раствора меди в алюминии и металлического соединения CuAl 2 , т.е. Al(Cu) + CuAl 2 .

Все сплавы системы Al – CuAl 2 по структуре и концентрации можно разделить на четыре группы:

1-я группа содержит меди от 0 до 0,3 %;

2-я группа содержит меди от 0,3 до 5,6 %;

3-я группа содержит меди от 5,6 до 33,8 %;

4-я группа содержит меди от 33,8 до 54 %.

Рассмотрим строение сплавов системы Al – CuAl 2 .

На рис. 2, а показана структура сплава первой группы, состоящая из зерен твердого раствора меди в алюминии. Структура сплава второй группы приведена на рис. 2, б : видны зерна твердого раствора меди в алюминии и кристаллы вторичного CuAl 2 ,

Структура доэвтектического сплава (твердый раствор меди в алюминии, кристаллы вторичного CuAl 2 и эвтектика) приведена на рис. 2, в . Структура эвтектического сплава – эвтектика, состоящая из мельчайших кристалликов твердого раствора меди в алюминии и CuAl 2 дана на рис. 2, г . На рис. 2, д приведена структура заэвтектического сплава, состоящая из первичных кристаллов CuAl 2 и эвтектики.

В сплавах, содержащих эвтектику, можно по структуре определить содержание меди. Однако в этом случае надо учитывать количество меди, находящееся в эвтектике и в твердом растворе. Например, в доэвтектическом сплаве, содержащем 30 % эвтектики и 70 % твердого раствора, количество меди в эвтектике

,

а в твердом растворе

.

Следовательно, исследуемый сплав содержит k x + k y = 14,06 % меди, что соответствует точке А, лежащей на оси абсцисс диаграммы состояния системы Al – CuAl 2 (рис. 1).

При определении состава заэвтектических сплавов рассчитывают количество меди, находящееся в эвтектике и в химическом соединении
. Сумма этих количеств будет соответствовать содержанию меди в заэвтектическом сплаве. Химическое соединениеCuAl 2 отличается большой твердостью и хрупкостью.

В технике применяются преимущественно алюминиевые сплавы, содержащие 2…5 % меди, которые называются дуралюминами. Они хорошо обрабатываются давлением и имеют высокие механические свойства после термической обработки и нагартовки.

Дуралюмины применяют для изготовления деталей и элементов конструкций средней и повышенной прочности ( в = 420…520 МПа), требующих долговечности при переменных нагрузках, в строительных конструкциях.

Из дуралюмина изготовляют обшивки, шпангоуты, стрингеры и лонжероны самолетов, силовые каркасы и кузова грузовых автомобилей и т. д.

Сплавы Al с Si называют силуминами. Они обладают хорошими литейными свойствами и содержат 4…13 % Si. Из диаграммы состояния этих сплавов (рис. 3) следует, что силумины представляют собой доэвтектические или эвтектические сплавы, содержащие в структуре значительные количества эвтектики.

Однако при литье в обычных условиях эти сплавы приобретают неудовлетворительное строение, так как эвтектика получается грубопластинчатой, с крупными включениями хрупкого кремния, что сообщает сплавам низкие механические свойства.

На рис. 4, а представлена структура силумина марки АЛ2, содержащего 11…13 % Si. В соответствии с диаграммой состояния алюминий – кремний сплав такого состава имеет эвтектическое строение. Эвтектика состоит из -твердого раствора кремния в алюминии (светлый фон) и игольчатых крупных и хрупких кристаллов кремния. Игольчатые выделения частиц кремния создают внутренние острые надрезы в пластичном алюминии и приводят к преждевременному разрушению при нагружении.

Рис. 3. Диаграмма состояния системы Al–Si

Рис. 4. Силумин: а – до модифицирования, грубоигольчатая эвтектика (Al-Si) и первичные выделения кремния;б – после модифицирования, мелкодисперсная эвтектика

(Al-Si) и дендриты твердого раствора кремния и других элементов в алюминии

Введение модификатора меняет характер кристаллизации. Происходит смещение линий диаграммы состояния так, что сплав с 11…13 % кремния становится доэвтектическим.

В структуре появляются избыточные светлые зерна -твердого раствора (рис. 4, б ).

Модификатор изменяет форму частиц кремния: вместо игольчатых выпадают мелкие равноосные, не создающие опасных концентраций напряжений при нагружении.

В результате модифицирования предел прочности у данных сплавов повышается с 130 до 160 МПа, а относительное удлинение с 2 до 4 %.

В сплавах, обрабатываемых давлением, содержание кремния менее 1%. В алюминиевых сплавах, содержащих магний, кремний связывается с ним в устойчивое металлическое соединение Mg 2 Si; оно образует с алюминием диаграмму состояния эвтектического типа с ограниченными твердыми растворами (рис. 5).

Соединение Mg 2 Si отличается высокой твердостью, его переменная растворимость в алюминии позволяет достигать значительного упрочнения при термической обработке.

В электротехнике применяют алюминиевые сплавы типа альдрей, легированные магнием и кремнием. При старении закаленных сплавов Mg 2 Si выпадает из твердого раствора и упрочняет его. В результате такой обработки удается получит предел прочности до 350 МПа при относительном удлинении 10-15 %. Существенно, что электрическая проводимость такого сплава составляет 85 % электрической проводимости проводникового алюминия. Это обусловлено тем, что из твердого раствора при старении почти полностью удаляется Mg 2 Si и сплав состоит из чистого алюминия и упрочняющей фазы (Mg 2 Si).

Р
ис. 6. Диаграмма состояния системыAl–Mg

Магний образует с алюминием твердые растворы, а также -фазу на основе соединения Mg 2 Al 3 . В большинство алюминиевых сплавов вводится магния не более 3 %, но в некоторых литейных сплавах типа магналия содержание его доходит до 12 %.

Как видно из рис. 6, в сплавах алюминия с магнием образуется эвтектика. Растворимость магния в алюминии сильно меняется с изменением температуры.

В качестве примера можно привести сплав АЛ8. В литом состоянии он имеет структуру, состоящую из зерен твердого раствора магния в алюминии и включений хрупкого соединения Al 3 Mg 2 .

После литья проводится гомогенизация при температуре 430 С в течение 15…20 часов, затем следует закалка в масле.

В процессе гомогенизации включения Al 3 Mg 2 полностью переходят в твердый раствор. Закаленный сплав приобретает достаточную прочность ( в = 300 МПа) и большую пластичность. Одновременно сплав приобретает высокую коррозионную стойкость. Старение для сплава АЛ8 является вредным: резко снижается пластичность и ухудшается коррозионная стойкость.

Цинк вводится в некоторые высокопрочные алюминиевые сплавы в количестве до 9 %. В двойных сплавах с алюминием при температуре выше 250 С цинк (в этих пределах) находится в твердом растворе (рис. 7).

Рис. 7. Диаграмма состояния системыAl–Zn

Все высокопрочные сплавы имеют сложный химический состав. Так, сплав В95 содержит 6 % Zn, 2,3 % Mg, 1,7 % Cu, 0,4 % Mn и 0,15 % Cr. Цинк, магний и медь образуют с алюминием твердые растворы и металлические соединения MgZn 2 , Al 2 CuMg – S-фаза, Mg 4 Zn 3 Al 3 – T-фаза. При нагревании эти металлические соединения растворяются в алюминии.

Например при температуре 475 ºС растворимость MgZn 2 в алюминии повышается до 18 % (рис. 8).

После закалки и искусственного старения сплав В95 имеет в = 600 МПа, = 12 %. Марганец и хром усиливают эффект старения и повышают коррозионную стойкость сплава.

(мас.)

Рис. 8. Диаграмма состояния системы Al–MgZn 2

Правила техники безопасности

1. Соблюдать все меры предосторожности и правила техники безопасности при приготовлении микрошлифов.

2. При шлифовании микрошлифа следует чаще охлаждать образец, чтобы не допускать ожогов пальцев рук.

3. При травлении шлифов пользоваться резиновыми перчатками.

4. При изучении структуры сплава на микроскопе следует убедиться, что он надежно заземлен.

5. Следует пользовать только исправным инструментом и оснасткой.

Порядок выполнения работы

1. Изучить диаграмму состояний алюминиевых сплавов.

2. Дать характеристику заданного сплава (структуру, фазовые превращения, состав, свойства, область применения).

3. Зарисовать структуру исследуемого сплава.

                Зарисовки микроструктур изученных сплавов с указанием фаз и структурных составляющих.

                Копирование диаграммы фазового равновесия, указанной преподавателем.

                Для сплава заданного состава описание всех фазовых превращений при нагреве или охлаждении и определение химического состава фаз.

Контрольные вопросы

    Почему коррозионная стойкость многих алюминиевых сплавов ниже коррозионной стойкости чистого алюминия?

    Можно ли по микроструктуре сплава определить тип сплава – литейный или деформируемый?

    Какова структура деформируемых алюминиевых сплавов, не упрочняемых термической обработкой?

    Каким путем достигается упрочнение однофазных алюминиевых сплавов?

    Какова упрочняющая термическая обработка двухфазных алюминиевых сплавов?

    Что является целью закалки дуралюмина?

    Каковы основные механические свойства дуралюмина?

    Какие сплавы называются силуминами?

    Какова удельная прочность алюминиевых сплавов?

    Основные легирующие элементы в алюминиевых сплавах.

Алюминий является одним из важнейших материалов, используемых в электронной промышленности, как в чистом виде, так и в составе многочисленных типов сплавов на его основе. Чистый алюминий не имеет аллотропических модификаций, обладает высокой теплопроводностью и электропроводностью, составляющими 62-65% от аналогичных параметров для меди. Температура плавления алюминия - 660 °С, температура кипения - 2500 °С. Твердость чистого алюминия составляет 25 НВ по Бринелю. Алюминий легко обрабатывается резанием, волочением, давлением.

При контакте с воздухом на поверхности алюминия образуется бес- пористая защитная оксидная пленка толщиной примерно 2 нм (20 А), защищающая его от дальнейшего окисления. Алюминий обладает низкой коррозионной стойкостью в растворах щелочей, соляной и серной кислотах. Органические кислоты и азотная кислота на него не действуют.

Промышленность выпускает несколько марок алюминия: особой чистоты, высокой чистоты и технической чистоты. Алюминий особой чистоты марки А999 содержит не более 0,001% примесей; высокой чистоты марок А995, А99, А97 и А95 соответственно - не более 0,005; 0,01; 0,03 и 0,05% примесей; технической чистоты марки А85 - не более 0,15% примесей.

В электронике чистый алюминий применяют при производстве электролитических конденсаторов, фол ьг, а также в качестве мишеней при формировании алюминиевых токопроводящих дорожек микроэлектронных устройств с использованием методов термического, ионно-плазменного и магнетронного напыления.

Наибольший интерес для электронной техники представляют сплавы на основе систем «алюминий - медь» и «алюминий - кремний», составляющие две большие группы деформируемых и литейных сплавов, используемых в качестве конструкционных материалов.

На рис. 2.7 приведена равновесная диаграмма состояния системы «алюминий - медь» со стороны алюминия. Эвтектический сплав в данной системе содержит 33% меди и имеет температуру плавления 548 °С. При повышении содержания в сплаве интерметаллида повышается прочность сплава, но ухудшается его обрабатываемость. Растворимость меди в алюминии при комнатной температуре составляет 0,5% и достигает 5,7% при эвтектической температуре.

Сплавы с содержанием меди до 5,7% можно перевести в однофазное состояние путем их закалки с температуры выше линии BD. При этом закаленный сплав обладает достаточной пластичностью при умеренной прочности и допускает обработку деформацией. Однако образовавшийся после закалки твердый раствор является неравновесным, и в нем протекают процессы выделения интерметаллидов, сопровождающиеся повышением прочности сплавов. При комнатной температуре этот процесс протекает в течение 4-6 сут и называется естественным старением сплава. Ускорение процесса старения материала обеспечивают его выдержкой при повышенной температуре, такой процесс называют искусственным старением.

Рис. 2.7. Диаграмма состояния системы «алюминий-медь» Другую группу алюминиевых сплавов, называемых литейными сплавами алюминия или силуминами, составляют сплавы на основе системы «алюминий - кремний». Диаграмма состояния данной системы приведена на рис. 2.8.


Рис. 2.8.

Эвтектический сплав содержит 11,7% кремния и имеет температуру плавления 577 °С. В данной системе не образуется интерметаллических соединений. Эвтектические сплавы обладают хорошими литейными и удовлетворительными механическими свойствами, которые улучшаются при введении в сплав до 1 % соединений натрия.

Необходимо иметь в виду, что эти соотношения отвечают равновесным условиям, которые имеют место при полном протекании диффузионных процессов.

Наряду с неограниченными растворами ряд металлов и элементов образуют друг с другом ограниченные твердые растворы, когда растворы образуются лишь в определенном диапазоне концентраций, а при более высоких концентрациях образуются другие структурные образования.

Специфика ограниченных твердых растворов состоит в том, что на диаграммах состояния область твердых растворов примыкает к чистым компонентам (небольшие концентрации легирующего элемента). Эти твердые растворы сохраняют структуру чистых металлов, а другие структурные образования на диаграмме состояния, называемые промежуточными фазами или интерметаллическими соединениями , имеют структуру, отличающуюся от основного и легирующего металла. На рис. 13 в качестве примера приведена двойная диаграмма состояния алюминий – магний (левая часть диаграммы). Предельная растворимость магния в алюминии при температуре 449°С равна 17,4 % (по массе), а минимальная растворимость при температуре 20°С составляет лишь 1,4 % Mg (для равновесного состояния). Только в этом интервале магний образует с алюминием твердый раствор – a. Свыше отмеченных предельных концентраций растворимости магния в алюминии появляется промежуточная фаза (интерметаллическое соединение) примерного химического состава .

Рис. 13. Левая часть диаграммы состояния Al-Mg

Рис. 14. Диаграмма состояние Al-Si

Интерметаллические соединения, как правило, повышают твердость и снижают пластичность сплава.

Диаграмму состояния эвтектического типа образуют два металла, образующие в жидком состоянии взаимные растворы, но практически не растворимые в твердом состоянии. В твердом состоянии структура таких сплавов представляет эвтектику – механическую смесь зерен двух металлов.

Примером диаграммы эвтектического типа служит диаграмма состояния алюминий-кремний. Для такой системы сплавов характерно наличие чисто эвтектического состава – для сплава Al-Si эвтектический состав равен 11,7 % Si + Al – остальное.

Эвтектические сплавы имеют строго определенную температуру солидуса; в частности для сплавов Al-Si температура солидуса равна 588°С.

Именно при этой температуре происходит окончание затвердевания при всех концентрациях кремния. Чисто эвтектический сплав данной системы имеет концентрацию кремния 11,7 %, его затвердевание происходит при постоянной температуре – 588°С (без интервала затвердевания). Литейный сплав Ак12 считается чисто эвтектическим сплавом. Сплавы с концентрацией кремния менее 11,7 % Si являются доэвтектическими и имеют структуру: a + эвтектика, где a – твердый раствор кремния в алюминии имеет очень низкую концентрацию кремния и представляет почти чистый алюминий. Сплавы с концентрацией кремния свыше 11,7 % – заэвтектические и характеризуются структурой: кремний + эвтектика. Доэвтектические и заэвтектические сплавы затвердевают в температурном интервале, но при одинаковой температуре солидуса 588°С.

Значительно меньшее применение в технике имеют сплавы, характеризующиеся диаграммами состояния перитектического типа; равно как и сплавы с фазовыми диаграммами, имеющие химические соединения.

Кроме того, большинство сплавов являются многокомпонентными, т.е. содержат не один, а несколько легирующих элементов. В этом случае диаграмма состояния не может быть представлена плоским изображением. Так сплавы из трех элементов представляются диаграммой состояния в трехмерном изображении: равносторонним треугольником задается состав сплавов, а перпендикуляры в углах к плоскости треугольника отражают величину температуры; фазовые превращения в трехкомпонентном сплаве представляются поверхностями над плоскостью равностороннего треугольника. Для плоского изображения при анализе таких диаграмм пользуются политермическими разрезами (сечение вертикальной плоскостью) и изотермическими разрезами (сечение горизонтальной плоскостью). Однако чаще всего многокомпонентный сплав рассматривают как двухкомпонентный с плоским представлением диаграммы состояния. Легирующие элементы по своему действию на фазовые переходы учитываются путем введения коэффициентов приведения к основному легирующему элементу.