Инновации в металлургии. Инновационные технологии в сталеплавильном производстве

Несмотря на недавний кризис, металлургическая промышленность сохраняет инвестиционный потенциал благодаря предыдущим крупным вложениям частных капиталов

Несмотря на недавний кризис, металлургическая промышленность сохраняет инвестиционный потенциал благодаря предыдущим крупным вложениям частных капиталов в развитие отрасли и активной поддержке государства. Еще в мае 2014 года Минпромторг утвердил «Стратегию развития черной и цветной металлургии России на 2014-2020 годы и на перспективу до 2030 года», в которой предусмотрено развитие индустрии на новом качественном уровне. В апреле 2015 года были согласованы планы мероприятий по импортозамещению в отраслях черной и цветной металлургии, скорректированные на текущую экономическую ситуацию. При этом в металлургической промышленности полным ходом идут инновационные проекты и модернизация предприятий.

Металлургия — одна из базовых отраслей мировой экономики, в нее вложена огромная масса ресурсов и инвестиций, в ней задействовано большое число людей, от ее продукции зависят многие другие направления бизнеса, и именно она влияет на развитие технологий в экономике той или иной страны.
Доля продукции металлургов в российском ВВП составляет порядка 5%, в промышленности — более 17%. Кроме того, металлургия является экспортно ориентированной отраслью, она составляет порядка 14% в совокупном экспортном объеме страны.

Господдержка и частные инвестиции

Поэтому увеличение конкурентоспособности продукции металлургической индустрии, расширение поставок такой продукции становятся стратегическими задачами федерального уровня. Так, в сентябре 2015 года глава российского правительства Дмитрий Медведев заявлял: «Сегодня металлургическая промышленность в целом работает неплохо, несмотря на непростую ситуацию в экономике. Конечно, мы будем всячески вас (металлургов. — Прим. ред.) поддерживать». Он также отмечал, что положение отрасли более-менее приличное, что связано с рыночной конъюнктурой, модернизированными мощностями и ослаблением отечественной валюты, что дает возможность наращивать экспорт. Только в первом полугодии текущего года, по оценкам экспертов, прибыль металлургов достигла 600 млрд рублей. Легко подсчитать, что металлургические предприятия — крупные и важные налогоплательщики, формирующие львиную долю бюджетных поступлений.

Развитие металлургической индустрии и инноваций в отрасли происходит не только при государственной поддержке, но и при участии частных инвестиций. При этом, согласно последним отраслевым новостям, сегодня инвестиционная активность в индустрии находится на довольно высоком уровне. Топливно-энергетические гиганты воплощают в жизнь масштабные инфраструктурные проекты, требующие металлургических мощностей и технологичной продукции, машиностроительные компании создают собственные цеха порошковой металлургии, региональные предприятия возводят современные заводы вторичной металлургии.
Инновационные трубы

Российские металлургические компании активно внедряют технологии, инновационные разработки, строят современные цеха, применяют новое оборудование и так далее.

Так, только за последний год ЧТПЗ неоднократно представлял на профильных мероприятиях модифицированную продукцию, соответствующую самым высоким стандартам качества. Например, трубы, предназначенные для строительства скважин и транспортировки нефти и газа на шельфе, в частности обсадные и насосно-компрессорные трубы с резьбовыми соединениями класса премиум, нефтегазопроводные трубы повышенной эксплуатационной надежности с содержанием коррозионно-активных компонентов, трубы в коррозионно-стойком исполнении для сред с повышенным содержание сероводорода и углекислого газа, хладостойкие обсадные и насосно-компрессорные трубы для эксплуатации при температурах до −60 °С и многое другое. Это трубы с повышенной коррозийной стойкостью, которые можно эксплуатировать даже в сложных климатических условиях Арктики. Они, например, применяются для добычи газа и нефти в скважинах с осложняющими факторами, такими как высокое давление газа, скважины с наклонными, горизонтальными участками и другими, не позволяющими использовать стандартные резьбовые соединения.

Вообще трубы повышенной надежности и износоустойчивости ранее практически не производились в России, а только импортировались. Сегодня в рамках курсах страны на импортозамещение металлурги освоили и успешно создают надежные трубы, которые уже востребованы не только крупнейшими компаниями ТЭК, но и иностранными предприятиями. Так, в августе 2015 года Первоуральский новотрубный завод выполнил первый клиентский заказ на поставку термообработанных прецизионных труб в Германию. Данный вид продукции предназначен для автомобильной промышленности.

Модернизированные мощности

В последние годы российские металлургические предприятия также модернизируют и обновляют свои рабочие площадки. И это позволяет не только производить технологичную продукцию, но и заметно влияет на ситуацию в регионах, городах, где данные компании работают. Они создают рабочие места, платят налоги, инвестируют в социальную жизнь регионов: спонсируют мероприятия, оказывают поддержку образовательным учреждениям и даже создают собственные программы обучения и т. д.

В 2010 году был запущен новый современный цех ЧТПЗ по производству труб большого диаметра «Высота 239». В него было инвестировано около 900 млн долларов США, а сегодня он обеспечивает работой более 1000 человек и выпускает высококачественную продукцию — трубы с наружным и внутренним покрытием, которые могут использоваться в суровых климатических условиях (например, в Восточной Сибири, где увеличивается объем разведки и разработки нефтяных и газовых месторождений), при повышенной сейсмоактивности и при прокладке трубопроводов по дну морей. В этом же году компания ЧТПЗ запустила в эксплуатацию новый современный электросталеплавильный комплекс «Железный Озон 32» на Первоуральском новотрубном заводе. В него было инвестировано 570 млн долларов. Он способен обеспечить 75% требуемых группе ЧТПЗ объемов заготовки для производства бесшовных труб, его мощность — 950 000 тонн в год.

В 2015 году стартовал еще один инновационный проект — завод «Этерно», который является совместной работой ЧТПЗ и «Роснано». «Этерно» — предприятие, которое будет выпускать соединительные детали трубопроводов с использованием наноструктурированных материалов. Продукция завода — штампосварные детали трубопроводов (ШСДТ), в первую очередь — отводы для поворота трубопровода в нужном направлении и тройники для сооружения ответвлений, а также детали для герметизации трубопровода и перехода с одного диаметра трубопровода на другой.
Помимо высококвалифицированного персонала, обучением которого занимается сам ЧТПЗ, завод обладает уникальными технологическими преимуществами, которые позволяют обеспечить мировые стандарты качества при конкурентоспособной себестоимости и минимальных сроках поставки. Мощность «Этерно» — 10 000 тонн штампосварных деталей трубопроводов в год. По оценкам экспертов, качество продукции завода позволяет говорить о том, что она также будет востребована не только на российском рынке, но и в других странах.
Вопрос экологии

Еще одна технологичная тенденция металлургической отрасли — забота о вопросах экологичности производимой продукции. До недавнего времени принято было считать металлургию, особенно черную, устаревшей отраслью. Но сегодня, как и во многих других отраслях промышленности, в металлургической индустрии большое значение приобретают экологичность и энергетическая эффективность. И решение этих вопросов также невозможно без развития новых технологий, внедрения современного оборудования. Разрабатываются целевые программы, проекты, изобретаются новые виды сплавов с экологичными характеристиками. Возводятся заводы, где объемы загрязняющих выбросов в атмосферу сокращены до минимума. И, опять же, это происходит и при государственном субсидировании, и самостоятельно металлургическими корпорациями.
Тенденции в металлургической отрасли перемещаются и в смежные индустрии: машиностроение, станкостроение и др. В свою очередь, они также начинают модернизироваться, осваивать технологические разработки, новое оборудование — не только иностранное, но и производимое в России и соответствующее мировым стандартам.

Мировой кризис негативно отразился на экономике России, но металлургическая промышленность сохранила свои возможности благодаря предшествующим крупным денежным вкладам. Металлургия – это основная отрасль государственной промышленности, своеобразный фундамент для развития экономики в целом.

В общем экспорте страны доля металлургии составляет 14%. Экспортируется более 40 % стали, выплавляемой в РФ. Продукция металлургов в ВВП составляет 5 %, во всем промышленном комплексе – 17%. Металлургическая отрасль вносит существенный вклад в экономику страны и наполняет бюджет. В связи с неблагоприятной экономической обстановкой принят также план по замещению импортной продукции на отечественную. Повышение конкурентной способности отрасли входит в стратегические планы государственного уровня. Предприятия отрасли модернизируются и применяют .

Востребованные инновации касаются обновления технологий, снижения ресурсоёмкости, улучшения экологической составляющей в металлургии. Особый упор делается на продукцию электродную, углеграфитовую, твёрдосплавную, полупроводниковую, прокатную. Чтобы избежать упадка в металлургической промышленности, необходимо активизировать инновационную деятельность. Научно-исследовательские учреждения оказывают существенную помощь в модернизации отрасли.

10 инноваций в металлургии 2018

Инновации в металлургии:

  1. Карусельная печь. Задействована в чёрной металлургии, снижает напряжение в подовой части печи.
  2. Спроектирован и введён в эксплуатацию печи Ванюкова для переработки шлаков и отходов в цветной металлургии. Аналог этой инновации – печь Ромелт, задействованная в чёрной металлургии. Преимущество её – возможность работы на низкосортном угле и переработка шлакоотходов. Хотя КПД такой печи ниже, чем у доменной, последняя не способна перерабатывать отходы и шлаки. Это большой рывок вперёд, ведь металлургические комбинаты завалены отходами, которые некуда девать. Стоимость проекта около 250 млн рублей, а строительство вне металлургического комбината будет стоить миллиард рублей. Инновация осуществлена за счёт частных инвестиций.
  3. Предприятие «Челябинский цинковый завод» осваивает флотационную технологию получения серебра из кеков цинкового производства. Инновационная технология даёт до 98 кг серебра из 100 килограммов сульфидного флотоконцентрата.
  4. Создана мембранная технология очистки сложных растворов в металлургии. Инновация позволяет очищать растворы от сульфатов тяжёлых цветных металлов на 99%. Новшество открывает возможность создания закольцованного водооборота на заводах отрасли.
  5. При плавке чугуна и стали используют синтетический легкоплавкий флюс. Инновация помогает увеличить способность шлаков к рафинированию.
  6. Динамический нанотестер. С помощью изобретения исследуют физико-механические параметры материалов разного происхождения, определяют коэффициент трения, модуль
    Юнга, нанотвёрдость и др.
  7. Комплекс для исследования и диагностики сыпучих нановеществ (нанотрубки, порошки для спекания и катализа, медпрепараты). Инновация предназначена для быстрого определения свойств и характеристик материала на разных этапах производства.
  8. Инновации касаются также водоснабжения производств чёрной металлургии. Для расчёта концентраций соли в подразделах, оптимизации структуры систем водоснабжения
    разработана технологическая модель с её математическим описанием.
  9. Индукционная плавильная установка ТВЧ Элсит позволяет экономить электроэнергию. Благодаря высокой мощности печь моментально нагревается и позволяет сразу
    плавить металл.
  10. Плоское прокатное оборудование для поперечно-клиновой прокатки заготовок применяют в изготовлении высокоточных деталей сложной конфигурации. Автоматизированный комплекс позволяет повысить производительность в 2 раза, уменьшить на 30% расход металлопроката, повысить точность изготовления и снизить трудоёмкость дальнейших операций.

Развитие металлургической промышленности закономерно входит в стратегическое планирование федерального уровня. Использование инноваций в металлургии, внедрение современной техники, модернизация действующей увеличивают коэффициент обновления основных производственных фондов до 5%. В перспективе, к 2020 году металлургическая промышленность выйдет на мировой уровень по количеству произведенной продукции.

Чёрная металлургия

Инновации в чёрной металлургии задействованы в отдельных направлениях производства:

  1. Доменном.
    Предусмотрено строительство установок по вдуванию угольной пыли, увеличение выплавки чугуна до 20% и уменьшением расхода природного газа.
  2. Сталеплавильном.
    Отказ от использования мартеновских печей для производства стали, уменьшение расхода металлопроката до 1088 кг/т в 2020 году с нынешних 1142
    кг/т. Использование сверхмощных печей для экономии электроэнергии(350 кВт*ч /т в сравнении с нынешними 500 кВт*ч/т).
  3. Прокатном.
    Увеличение выпуска листового металла в общем выпуске металла до 65%, доведение до уровня экономически развитых стран.
  4. Цветная металлургия
    Темп роста отрасли вызван необходимостью заместить импорт отечественной продукцией. Быстрый рост требует инновационного подхода к технологии, технике и организации производства. Нестабильность внешнего рынка и недостаточная ёмкость отечественного требуют развития последнего.

Главенствующими вопросами цветной металлургии являются: возрастание части выпуска алюминия в электролизерах и наращивание мощностей в производстве тяжёлых цветных металлов по технологии автогенных процессов. До конечного срока «Стратегии развития чёрной и цветной металлургии России на 2014-2020 годы» их часть должна составить 97% от общего производства.

Комбинат «Североникель»

Предприятие с давней историей, с 1998 года комбинат «Североникель» входит в состав АО «Кольская ГКМ». Сейчас на нём перерабатывается файнштейн и завершается производственный цикл.

«Норникель» инвестировал в обновление производства никеля Кольской ГМК более 20 млрд рублей. Планируется освоить новую технологию электроэкстракции для рафинирования никеля. Никелевые аноды не будут плавить, так как сырьём выступит никелевый порошок. Постепенно старые ванны для электролиза заменят новыми. Всего планируется постепенно заменить 476 ванн в цехе электролиза.

Кольская горно-металлургическая компания модернизирует обогатительную фабрику. Усовершенствования касаются АСУ ТП. Комплекс замещается новым, поскольку прекращено производство запасных комплектующих и возможны аварийные ситуации. Новое оборудование устанавливают поэтапно. Уже произведена замена на пульпонасосной станции, сейчас модернизируются 3 секции флотации. За 2018 год будет заменён весь аппаратный комплекс предприятия.

Предприятие планирует модернизировать всю систему управления до начала 2019 года и соединить в одну централизованную систему управления обогатительной фабрики СУ отдельных производственных участков. Это позволит далее совершенствовать технологический процесс, проявлять гибкость при смене технологических циклов.

Комбинат «Североникель» осваивает новый способ переработки платинорениевых катализаторов, результатом которой является концентрат платины и перренат аммония.

Для предприятия разрабатывается технологическая линия очистки стоковых вод до приемлемого уровня.

Процесс Consteel является инновационным решением в электросталеплавильном производстве, которое позволяет значительно экономить энергоресурсы и повышает эффективность и экологичность производства стали в электропечах.

Рис. 47. Схема установки Consteel: 1 – загрузка металлолома; 2 – конвейер; 3 – подогрев шихты горелками; 4 – отвод отходящих газов на установку газоочистки; 5 – подогрев шихты отходящими газами; 6 – электросталеплавильная печь; 7 – фурма для продувки ванны кислородом и углеродом

Особенностью этой технологии является непрерывная подача металлолома по конвейеру в электросталеплавильную печь (рис 47). Таким образом, процесс плавки становится фактически непрерывным. При этом обеспечивается постоянное плоское зеркало металла, над которым горят электроды, а расплавление поступающего металлолома происходит в ванне жидкого металла, что приводит к повышению стабильности процесса. Емкость таких печей составляет от 40 до 320 т. Внешний вид установки приведен на рис. 48.


Рис. 48. Внешний вид установки Consteel

В соответствии с технологией, шихта, с помощью электромагнитного крана, из вагонов подается на загрузочный конвейер, подогреваемый отходящими печными газами, который транспортирует ее к ДСП. Существует вариант технологии с дополнительными горелками, установленными над конвейером. Преимуществом процесса является отсутствие необходимости окускования металлолома, возможно использование даже стружки.

Подогретая шихта загружается в ДСП, где происходит ее расплавление в ванне жидкого металла. Отходящие с ДСП печные газы подогревают движущуюся по конвейеру шихту, после чего направляются на станцию газоочистки.

В отличие от загрузки, выпуск стали из печи осуществляется периодически, а для автоматического обнаружения шлака при выпуске используется устройство на основе инфракрасного датчика.

В печь также можно заливать жидкий чугун, который непрерывно подается в рабочее пространство печи по специальному футерованному желобу.

Преимущества технологии Consteel:

  • сокращение расхода электроэнергии на 80…120 кВт·ч/т и электродов за счет повышения стабильности процесса и подогрева шихты;
  • повышение производительности печи за счет непрерывности процесса;
  • лучшие условия для шлакообразования и более благоприятная атмосфера в печи.
  • повышение стойкости футеровки печи;
  • снижение более чем на 40% затрат на материально-техническое обеспечение, персонал и обработку отходов производства.
  • пониженное содержание FeO в шлаке, снижение содержания азота, фосфора и водорода в стали;
  • снижение уровня шума и повышение экологичности производства.

Двухкорпусные печи

Двухкорпусные печи в первую очередь характеризуются повышенной производительностью. Такая печь состоит из двух ванн (корпусов) и одной системы питания с одним (печь постоянного тока) или тремя (печь переменного тока) электродами, которые переставляются с одной ванны на другую. Схема расположения оборудования двухкорпусной печи постоянного тока приведена на рис. 49, а внешний вид на рис. 50.


Рис. 49. Схема двухкорпусной электросталеплавильной печи: 1 – корпус, в котором происходит подогрев шихты.; 2 –
корпус, в котором происходит выплавка стали; 3 – канал для отходящих газов; 4 – канал к системе газоочистки; 5 – электрод с держателем; 6 – положение электрода на второй стадии; 7 — электрические кабеля к верхнему электроду; 8 — электрические кабеля к нижнему электроду

Пока в одном корпусе идет плавка металла с помощью электродов в другом корпусе происходит подогрев шихты отходящими газами из первого корпуса или газовыми горелками. При этом время плавки сокращается на 40%, а за счет подогрева шихты достигается снижение расхода электроэнергии на 40…60 кВт·ч/т. Встречаются печи, в которых электроды установлены на двух ваннах, однако в этом случае теряется экономический эффект от сокращения капитальных затрат на строительство агрегата.


Рис. 50. Двухкорпусная сталеплавильная печь постоянного тока

Еще одним вариантом реализации двухкорпусных печей является агрегат CONARC (СONverter + electric ARC furnance). Этот агрегат также имеет два корпуса печи, но помимо одного комплекта электродов на нем установлена и фурма для подачи кислорода (как в конвертере). Внешний вид агрегата приведен на рис. 51. Преимуществом данного агрегата является возможность выплавки стали из жидкого чугуна и металлолома (или DRI) практически в любых пропорциях.


Рис. 51. Агрегат CONARC

Процесс выплавки стали разделен на две стадии (рис. 52). Вначале в один корпус заливают чугун, в печь устанавливают фурму и начинают продувку кислородом. На этой стадии производится обезуглероживание металла.


Рис. 52. Схема агрегата CONARC: 1, 2 – корпуса печи; 3 – кислородная фурма; 4 – электроды; 5 — газоотвод

Во избежание перегрева ванны из-за происходящих во время продувки процессов окисления углерода, кремния, марганца и фосфора, в печь добавляют охладители в виде металлолома или DRI. После завершения продувки, кислородную фурму переставляют на второй корпус (или отводят в сторону), а на первый корпус устанавливают электроды. На этой стадии в печь добавляют оставшееся количество твердой шихты и начинают ее расплавление с помощью электродов.

После достижения необходимой температуры металл выпускают в ковш. Затем процесс циклически повторяется снова. Таким образом, выплавка стали идет одновременно в двух корпусах печи, а электроды и фурма переставляются на них поочередно, что обеспечивает высокую производительность агрегата, которая на 30 % выше чем у двух обособленных агрегатов аналогичной емкости). Время плавки составляет от 40 до 60 мин.

Аналогичный принцип использован и в агрегате «Arcon-процесс», разработанном компанией «Concast Standard AG». Отличием является то, агрегат питается постоянным током и корпус агрегата фактически соответствует корпусу конвертера. Поскольку используется постоянный ток, то на агрегате установлено не три, а два электрода – один верхний графитовый и один донный пластинчатый медный электрод (см. рис. 49).

Агрегат «Arcon» имеет производительность 1,6 млн.т/год. В качестве металлошихты используют жидкий чугун (40%), гранулированный чугун (5%) и HBI (55%). Масса выпускаемой плавки — 170 т. Цикл работы каждого корпуса агрегата составляет 92 мин.

В целом, комбинация конвертера и дуговой печи в одном агрегате дает следующие преимущества по сравнению с обычной дуговой печью:

  • широкий выбор металлошихты;
  • высокая производительность;
  • низкий расход электроэнергии в результате использования химической энергии окисления примесей металлошихты;
  • уменьшение требуемой электрической мощности;
  • снижение удельного расхода электродов;
  • меньшее влияние на токоподводящие сети, возможность работы при маломощных электросетях;
  • снижение затрат на электрооборудование.

Шахтные электросталеплавильные печи

Особенностью конструкции шахтной электросталеплавильной печи является наличие шахты, в которой производится подогрев металлолома перед загрузкой его в печь. Такая шахта устанавливается сверху над сводом обычной дуговой печи. Шахт может быть одна или две. Температура до которой можно подогреть металлолом составляет 800 °С. Экономия электроэнергии за счет такого предварительного подогрева металлолома составляет 70…100 кВт·ч/т. Через шахту загружается до 60% металлолома, остальной (например крупногабаритный) загружается в саму ванну печи, для этого шахта отодвигается в сторону. Цикл плавки составляет 35…50 минут от выпуска до выпуска. Кроме экономии электроэнергии обеспечивается также сокращение расхода электродов на 30% и повышение производительности на 40%.

Данный процесс появился сравнительно недавно (в конце 80-х годов 20 века), поэтому поиск оптимальных конструкции такой печи продолжается. Рассмотрим два наиболее современных варианта.

SIMETAL EAF Quantum – самое современное конструкторское решение печи с подогревом металлома. На настоящий момент установлена только одна печь на заводе мексиканской сталелитейной компании Talleres y Aceros S.A. de C.V. (г. Тиаса).

Масса плавки по выпуску составляет 100 т, но при этом масса болота (металл и шлак, оставленный после предыдущего выпуска) составляет 70 т. Схема печи приведена на рис 53.


Рис. 53. Схема расположения оборудования печи SIMETAL EAF Quantum: 1 –бадья с металлоломом; 2 – загрузочный лоток; 3 – наклонный подъемник; 4 – система газоочистки; 5 — загрузочное устройство; 6 – шахта для подогрева шихты; 7 – ДСП; 8 – сталеразливочный ковш; 9 – держатель с электродами; 10 – трансформатор

Металлолом краном загружается в бадью и перегружается в подъемник, который поднимается на верх шахты и после открытия люка высыпается вовнутрь, где происходит его подогрев. В этой печи применена новая конструкция шахты, с удерживающими металлолом водоохлаждаемыми пальцами (рис. 54).

Рис. 54. Конструкция шахты печи SIMETAL EAF Quantum (а) и конструкция водоохлаждаемых пальцев (б)

После подогрева пальцы разводятся в стороны и металлолом высыпается в ванну печи. Всего за цикл плавки, продолжительность которого составляет 33 мин, предусмотрена подача трех порций металлолома. Продолжительность нагрева каждой порции – 9 минут. Выпуск металла осуществляется через канал в виде сифона (рис. 55) что позволяет наклонять печь всего на 4° и отсекать полностью шлак.


Рис. 55. Выпуск стали в печи SIMETAL EAF Quantum

Еще одним инновационным решением, которое совмещает в себе преимущество шахтных печей и печей с непрерывной загрузкой является система EPC (Environmental Preheating and Continuous Charging), которую разработали компании CVS MAKINA и KR Tec GmbH (Турция).

Схема печи с установкой EPC приведена на рис. 56.


Рис. 56. Дуговая печь с системой ЕРС: 1 — ДСП; 2 — система ЕРС; 3 – завалочная камера; 4 – система газоотвода; 5 – шахта для подогрева шихты; 6 – телескопический толкатель

Система ЕРС работает следующим образом (рис. 57). С помощью завалочной корзины шихта загружается в завалочную камеру системы EPС, через отрытую крышку (рис. 57, а).


Рис. 57. Схема работы установки ЕРС: а – загрузка шихты; б – нагрев; в – выгрузка шихты в печь; г – окончание выгрузки нагретой шихты и загрузка новой порции

В этой позиции передняя стенка завалочной камеры закрывает шахту (камеру предварительного нагрева) в которой уже подогревается первая порция шихты. Во время загрузки шихты в завалочную камеру процесс плавления в ДСП и процесс предварительного нагрева шихты не останавливаются.

После загрузки шихты из корзины в завалочную камеру крышка закрывается и с помощью гидравлических цилиндров завалочная камера помещается сверху шахты, в которую высыпается шихта для ее предварительного нагрева (рис. 57, б).

После подогрева шихты, с помощью толкателя часть ее ссыпается в пространство печи (рис 57, в), а затем происходит загрузка новой порции металлолома (рис 57, г).

Время плавки в печи, оснащенной системой ЕРС составляет 36 мин, масса плавки по выпуску – 100 т, температура подогрева шихты 800 °С.

Преимущества системы EPС:

  • энергосбережение до 100 кВт·ч/т;
  • увеличение производительности на 20%;
  • независимая завалка лома;
  • минимальный выброс пыли;
  • быстрая окупаемость (около 12 месяцев).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Инновации в цветной и черной металлургии

Выполнила:

Трофимова В.Н.

Группа: р-322

Преподаватель:

Тульверт В.Ф.

Черная металлургия является одной из базовых отраслей национальной промышленности и одним из немногих секторов, который может внести весомый вклад в обеспечение экономического роста в России в XXI веке.

Черная металлургия занимает устойчивые позиции в структуре российской экономики. Согласно статистическим данным, ее удельный вес в общем объеме промышленной продукции составляет примерно 10,5%, а в структуре валового внутреннего продукта - около 4,4%. Данная отрасль - одна из наиболее прибыльных в России. Ее доля в общем объеме прибыли по промышленности увеличилась до 16,5% в 2007 году. Черная металлургия является крупным налогоплательщиком и обеспечивает 14,5% поступлений в бюджетную систему нашей страны. На предприятиях отрасли сконцентрировано около 6% основных производственных фондов и 4,9% численности персонала, работающего в промышленности.

В развитие приведенных инновационных направлений были реализованы следующие конкретные разработки:

Карусельная печь.

Карусельная печь для использования в черной металлургии содержит печь, которая имеет в плане форму кольца и снизу закрыта вращающимся подом, облицованным сверху огнеупорным материалом, и основание этой печи. Под содержит одинаковые кольцевые секторы, которые соединены с образованием кольца, комплементарного кольцу внутренней планировки печи, и которые вращаются вокруг центральной оси этого кольца посредством двух концентрических наборов колес, установленных на двух окружностях на равных расстояниях друг от друга, закрепленных с помощью опор на основании или снизу пода и комплементарных двум окружным рельсам, закрепленным соответственно снизу пода или на основании. Оба указанных набора колес и указанные два рельса установлены с обеспечением распределения поровну действующей на них нагрузки. При использовании изобретения уменьшаются напряжения в конструкции вращающегося пода.

Комплексный синтетический легкоплавкий флюс для черной металлургии. Изобретение относится к черной металлургии и может быть использовано для металлургических процессов выплавки чугуна и стали. Флюс содержит 30-60% углерода, 5-30% оксида кальция 25-65% фторидов натрия, алюминия, кальция и магния, 0,5-5% примесей, в том числе оксиды алюминия, железа, кремния. Изобретение позволит повысить рафинирующую способность металлургических шлаков за счет увеличения в составе флюса содержания легкоплавких и высокоактивных компонентов и оптимизации их соотношения.

Универсальный динамический нанотестер.

Нанотестеры представляют собой микрозондовые системы, предназначенные для проведения комплексного исследования физико-механических параметров различных материалов (от биологических до твердых сплавов и керамик) в субмикрообъемах и тонких приповерхностных слоях методом динамического индентирования на основе анализа зависимости «нагрузка-деформация». Помимо непрерывного индентирования, позволяет реализовывать следующие виды испытаний: определение коэффициента трения, нанотвердости, модуля Юнга, вязкости разрушения; осуществление микропрофилирования, царапанья, моделирования фреттинга и абразивного износа; определение степени адгезии пленок и покрытий.

Исследовательский комплекс для диагностики сыпучих, пористых наноматериалов и жидкостей.

Программно-аппаратный комплекс включает в себя измерительно-силовую головку, контроллер для управления, сбора и первичной обработки потоков данных и программное обеспечение, организующее все циклы работы комплекса.

Может использоваться в двух направлениях:

идентификация продукции в насыпном виде на основе специально созданной базы;

экспресс-контроль свойств, характеристик продукта и их стабильности на разных стадиях производственного цикла.

Объектом диагностики могут быть нанотрубки, металлические порошки (для катализа, для спекания), лекарственные средства, тонкодисперсные пигменты и др., а также различные жидкости.Оригинальный метод диагностики основан на микромеханическом тестировании пористых и слабосвязанных материалов в насыпном виде.Характеризация жидкостей базируется на контроле амплитуды и фазы колебаний зонда в среде.

Инновационные технологии систем производственного водоснабжения заводов черной металлургии.

1. Разработана технологическая модель с математическим описанием сложных, имеющих сетевую структуру систем производственного> водоснабжения. Модель позволяет рассчитать концентрации солей во всех подсистемах, оптимизировать структуру и водно-химический режим систем производственного водоснабжения предприятия.

2. Системно изучены физико-химические и технологические свойства, разработана систематизация окалиномаслосодержащих вод и осадков -- трехфазных микрогетерогенных систем, содержащих жидкую полярную дисперсионную среду, твердую и жидкую аполярную дисперсные фазы. Предложено дополнить существующую классификацию микрогетерогенных дисперсий шестью теоретически возможными трехфазными системами с жидкой дисперсионной средой -- эмульсионно-суспензионными системами.

3. Широко применяется математическая модель для анализа и оптимизации водно-химического режима, и. структуры сложных систем производственного водоснабжения, как при проектировании новых объектов, так и при поэтапном (ступенчатом), возрастании степени замыкания- существующих систем, которое приводит к снижению и прекращению сброса сточных вод.

4. Разработаны и внедреныфеагентные и безреагентные методы и оборудование для. интенсивных процессов глубокой очистки оборотных вод и обезвоживания осадков, основанные на результатах изучения их физико-химических свойств, в т.ч. эффекта гидрофобной ортокинетической флокуляции.

5. Разработаны и внедрены на 4-х заводах России и Украины аппараты типа «0КУД» для глубокого гравитационного обезвоживания окалиномаслосодержащего осадка до влажности" 15% (сыпучее состояние). Технологические особенности процесса обезвоживания определяют минимальную, в сравнении с аналогами, себестоимость получаемого продукта.

Инновации в цветной металлургии России

Цветная металлургия имеет в последние годы один из самых высоких темпов роста производства. Показано, что повышение технологического уровня производства в рыночных условиях определяется ускоренным переводом отрасли на инновационный путь развития.

Технологический уровень металлургических производств в России низок в сравнении с промышленно развитыми странами. Средний износ активной части (машин и оборудования) в металлургической промышленности достиг 70%. Только 30% применяемых технологических схем соответствуют современному мировому уровню, а 28% являются устаревшими и не имеют резервов для модернизации. Недостаточно высокий технологический уровень производств обусловливает значительное отставание по ряду основных технико-экономических показателей российской металлургии от металлургии развитых стран (США, Японии): средняя энергоемкость производства алюминия выше на 20ч30%; количество отходов при выпуске проката выше в 2 раза; средняя производительность труда ниже в 2,5ч3 раза; суммарное удельное негативное воздействие на окружающую среду выше в 2 раза. В этих условиях основным направлением развития металлургии является широкое и ускоренное внедрение инноваций на основе активизации инвестиционной деятельности на всех производственных переделах. При этом государство должно создать условия для перехода металлургической промышленности на инновационный путь развития.

В развитие приведенных инновационных направлений за последние 10 лет были реализованы следующие конкретные разработки.

В области важнейших прикладных исследований:

Разработаны и приняты к внедрению на АО “Челябинский цинковый завод” технология и оборудование для получения свинца из продуктов вельцевания цинковых кеков, обеспечившая повышение извлечения свинца на 0,8%, цинка - на 0,7%, серебра - на 2,5%, индия - на 5-7%;

Разработана и внедрена на АО “Челябинский цинковый завод” флотационная технология извлечения серебра из кеков цинкового производства, позволившая повысить комплексность использования сырья, обеспечив извлечение серебра в сульфидный флотоконцентрат до 98%;

Разработана технология очистки промышленных стоков до требований хозбытовых норм; технология предложена к внедрению на ОАО “Комбинат “Североникель” и АО “Челябинский цинковый завод;

Обоснована и отработана в опытно-промышленных условиях технология извлечения рения из вторичного сырья; показана принципиальная возможность пополнения отечественной сырьевой базы рения за счет вовлечения в переработку вторичного сырья (отходы получения суперсплавов и прочие отходы авиа - и моторостроительной промышленности). Разработанная технология обеспечивает извлечение рения в товарную продукцию до 98,5%, молибдена - до 99%;

Разработана экологически чистая технология утилизации твердых бытовых и промышленных отходов для ГП “Пятигорский теплоэнергетический комплекс”;

Разработана и внедрена безотходная технология переработки чернового сплава аккумуляторного лома на АО “Рязцветмет” с целью получения из него товарной продукции - свинцово-сурьмяного сплава (УС-1, УС-1С, модифицированного селеном) для ЗАО “Подольский АЗ”;

Применительно к РАО “Норильский никель” разработан и внедрен новый технологический режим с применением модифицированного диметилдитиокарбамата (ДМДК), обеспечивший повышение извлечения никеля в одноименный концентрат на 10-12% и содержания никеля с 7,5до 10%. Разработан и предложен к внедрению на РАО “Норильский никель” сульфонатный аполярный собиратель, обеспечивающий повышение попутного извлечения золота и платиновых металлов на 1,5-2%;

Разработана и внедрена беспропарочная технология флотации медно-молибденовых руд с использованием нового флотационного реагента “Берафлот” на МРСП “Эрдэнэт” (Монголия), обеспечившая снижение энергопотребления на 20-30% при сохранении высоких технологических показателях.

В области природоохранных социально востребованных технологий:

Разработана технология очистки и утилизации сбросных газов от SO2 и NOx с использованием импульсно-частотного (стримерного разряда, обеспечивающая степень очистки газов не менее 95% и перевод диоксида серы в серную кислоту до 90%, оксида азота - в азотную кислоту до 80%;

Разработана мембранная технология переработки сложных по составу растворов металлургического производства, обеспечивающая степень очистки растворов от сульфатов тяжелых цветных металлов на 98-99%, от органических веществ - на 85%, позволяющая создать на предприятиях замкнутый водооборот;

Разработана технология переработки серосодержащих металлургических газов с получением комковой серы для производства эффективного дорожного покрытия - сероасфальта и строительного материала - серобетона.

Обогащение руд цветных металлов.

Основой разработанных комбинированных схем переработки труднообогатимых руд цветных металлов является получение на переделе обогащения высококачественных селективных концентратов, в которых сосредотачиваются легкообогатимые минералы, и коллективных промежуточных продуктов, которые перерабатывают по химико-металлургическим технологиям. По существу решение сложных задач повышения эффективности переработки рудного сырья переходит в сферу более тесной интеграции процессов обогащения и металлургии, способных не только повысить комплексность использования сырья, но и решить проблемы охраны окружающей среды и сохранения природных ресурсов. Такой подход к переработке рудного сырья обеспечивает как эффективную концентрацию ценных компонентов на стадии обогащения, так и экологически безопасное производство цветных металлов.

В институте разработаны и апробированы несколько комбинированных схем для различных типов руд с использованием новых реагентных режимов флотации.

Например, молибденсодержащие руды достаточно легко и с высоким извлечением металлов обогащаются с получением коллективного концентрата. Однако селективная флотация идет неэффективно, с высокими затратами, по сложной схеме. Установлено, что молибденсодержащие промпродукты (от 5 до 20% молибдена) могут экономически выгодно перерабатываться по схеме: автоклавное окислительное выщелачивание (с дофлотацией кека) - фильтрация - очистка - селективная сорбция молибдена и рения.

Сквозное извлечение этих металлов не менее 98%, медь остается в кеках и перерабатывается как медный концентрат.

Основной проблемой обогащения медно-цинковых руд является трудность отделения медных минералов от остальных сульфидов в силу их тонкого прорастания. Разработанная схема включает получение на этапе обогащения высококачественных медных концентратов и промпродуктов, подвергаемых окислительному автоклавному выщелачиванию отработанным цинковым электролитом. Извлечение цинка в раствор составляет 93-96%. Разработано несколько способов выделения меди из раствора применительно к различному соотношению металлов в нем.

При обогащении медно-никелевых руд получают медный и никелевый концентраты и пирротиновый продукт, содержащий железо, никель, медь и благородные металлы. Для переработки этого продукта используют химическое обогащение, в основу которого положено окисление пирротина в водной пульпе в автоклавах, осаждение перешедших в раствор цветных металлов, флотационное отделение сульфидов и элементной серы от оксидов железа с последующей селекцией пенного продукта с получением богатого сульфидного концентрата и товарной серы.

Технология позволяет извлечь из бедного продукта 85-92% никеля, меди и благородных металлов и утилизировать серу. За счет перевода в промпродукт трудноразделяемых минералов удалось существенно повысить качество медного и никелевого концентратов на стадии первичного обогащения.

Полиметаллические руды представляют собой наиболее сложное сырье для обогащения, так как необходимо получить не менее трех товарных концентратов. Разработанная для этих руд комбинированная схема включает коллективную флотацию сульфидов (при отсутствии цикла селекции суммарное извлечение трех металлов составило 270%), автоклавное окислительное выщелачивание (до сульфатов), фильтрация, флотация из кеков благородных металлов и свинца. Извлечение из концентрата меди и цинка в раствор составило 98%, свинца в ценный продукт флотации 85%. Медно-цинковый раствор может быть переработан известными способами. Аналогичные результаты получены и на свинцово-цинковых труднообогатимых рудах.

Пирометаллургические процессы

Наиболее перспективным и приоритетным направлением в развитии автогенных процессов в первую очередь в металлургии меди является плавка с получением в одну стадию “белого матта” (черновой меди).

Новым высокоэффективным процессом является усовершенствованная кислородно-факельная плавка:

Кислородно-факельная плавка (КФП) в агрегатах с вертикальными шихтово-кислородными горелками с наведением высокоосновных саморассыпающихся ферритно-кальциевых шлаков, которые затем подвергаются глубокому флотационному обезмеживанию. Для данного варианта технологии на основе специальных исследований тщательно подобран новый состав шихты для КФП при определенном соотношении Fe: SiO2: CaO. Шлак успешно флотируется с извлечением более 87% меди в концентрат и получением отвальных хвостов с содержанием менее 0, 29% Сu.

Факельно-барботажная плавка (ФБП). Это принципиально новый способ плавки и агрегат для его реализации, сочетающий в полной мере все достоинства как факельных, так и барботажных процессов.

Технология базируется на следующих вновь предложенных и исследованных приемах: разделение реакционного объема на последовательные зоны с индивидуальным подводом газообразного окислителя, бесфлюсовое окисление сульфидов до штейна в головной факельной зоне, доокисление расплава до “белого матта” (черновой меди) в следующей барботажной зоне с подачей в нее флюсов и формированием комбинированного силикатно-кальциевого шлака, который подвергается внутрипечному барботажному обеднению в специальной зоне. Технология внедряется на Алмалыкском комбинате (Узбекистан), где сооружается печь ФБП мощностью до 120 тыс. т меди в год.

На комбинате “Североникель” сульфидные концентраты, полученные при разделении файнштейна, обжигают в печах кипящего слоя (КС). На трубчатой печи для восстановления огарка в интервале температур 850ч1100°С используется разработанная технология получения высокоактивного никеля с суммарной степенью металлизации по Ni и Со 90 %. В производстве анодов получаемого чернового никелевого порошка методом дуговой электроплавки за счет увеличения степени металлизации и активности порошка удалось снизить на 7 % удельный расход электроэнергии и на 9,3 % расход электродов.

Впервые на Рязцветмете внедрена технология переработки сурьмянистых концентратов. Извлечение золота из сырья в сплав составило 95,7 %. Получаемая на производстве металлическая сурьма соответствует марке Су-О.

В производстве свинца разработана и используется на упомянутом заводе технология переработки аккумуляторного лома в электропечах мощностью 1,8 МВА и с площадью пода 13 и 15 м2. Схема безотходной электротермической технологии переработки отработавших аккумуляторов включает: механизированную разделку аккумуляторного лома, плавку, рафинирование чернового свинца и переработку оборотов с получением товарных продуктов. На сепарационной установке дробленный аккумуляторный лом подвергается разделению на пять фракций (металлическую, оксисульфатную, полипропилен, поливинилхлорид и эбонит). Плавка ведется без образования штейна, количество шлака сокращено до минимума.

В полупромышленном масштабе отработана принципиально новая, экологичная, малоотходная технология переработки некондиционных полиметаллических концентратов, содержащих свинец, медь и цинк, и промежуточных продуктов с получением товарных продуктов: чернового свинца, содержащего благородные металлы, штейна; шлака, с содержанием более 15 % оксида цинка, его перерабатывают вельцеванием или шлаковозгонкой. Технологическая схема включает окислительный обжиг в прокалочной печи и плавку в электротермической печи с небольшим объемом отходящих газов.

Для переработки различного металлургического техногенного сырья разработана печь постоянного тока с поляризацией жидкометалльной донной фазы (штейна, металла) ПДФ (рис. 3).

Печь ПДФ позволяет перерабатывать экологически безопасным способом металлургическое техногенное сырье - забалансовые и труднообогатимые полиметаллические руды, текущие и накопленные нецелевые промпродукты с достаточно высоким содержанием ценных металлов (шлаки, шламы, кеки, клинкеры и др.), а также вторичное сырье и практически любые отходы при температуре до 1800°С с отгонкой летучих и переводом нелетучих ценных металлов и серы в донную фазу.

Технология впервые в указанной области позволяет реализовать в промышленном масштабе преимущества электролиза расплавленных сред, включая электрохимическое восстановление металлов, интенсификацию их осаждения в донную фазу и отгонки летучих компонентов, резко повысить извлечение ценных металлов, решить проблему избыточного настылеобразования в шлаковых электропечах.

Для переработки бедных окисленных никелевых руд Урала разработана хлоридовозгоночная технология. Она осуществляется во вращающейся печи, отапливаемой пылеуглем, при температуре 1050-1100 °С, уголь сгорает в нагретом до 300-400°С воздушном дутье, при этом в факел вдувается хлористый водород и водяной пар. Получаемые оксиды железа, никеля и кобальта могут быть переработаны в различные виды товарной продукции.

Переработка потерявших активность катализаторов

Катализаторы, используемые в нефтеперерабатывающей промышленности, содержат такие ценные компоненты как рений, платина, палладий, молибден, кобальт, никель.

Технологическая схема переработки катализаторов, содержащих молибден, никель, кобальт включает удаление органических веществ из сырья, селективный перевод молибдена в раствор на первичной операции с последующим сорбционным извлечением, концентрированием и очисткой от примесей, получением товарной молибденовой продукции.

На комбинате “Североникель” освоена технология переработки платинорениевых катализаторов, по которой получают платиновый концентрат и перренат аммония. Извлечение рения в перренат аммония составляет 93-94 %. Технология включает перевод рения в жидкую фазу пульпы и сорбционную переработку растворов с использованием ионитов высокой сорбционной емкости.

Разработаны новые технологии извлечения платины, палладия, родия из дезактивированных катализаторов. Эти технологии позволяют извлекать платиновые металлы совместно и раздельно в виде металлических порошков. Получение порошков платины и палладия основано на процессах реагентного восстановления солей этих металлов в условиях гетерогенной реакции. Содержание основных компонентов в порошке составляет 99,80-99,99 %. Извлечение платины - 96-99,2 %.

Гидрометаллургия

Новым направлением в гидрометаллургии является использование экстракции и сорбции для извлечения и разделения редких и рассеянных элементов, а также тугоплавких металлов.

Экстракция индия из цинковых растворов внедрена на всех цинковых заводах, а также на Чимкентском свинцовом заводе. Аналогов такой технологии в мировой практике не имеется. Внедрение экстракции позволило повысить его извлечение в товарную продукцию на 10-30 %.

На Джезказганском горно-металлургическом комбинате экстракция рения используется для его извлечения из промывной серной кислоты. На Чимкентском свинцовом заводе сорбция рения применяется при переработке свинцовых пылей. Экстракционный способ извлечения рения использовался на Скопинском гидрометаллургическом заводе при переработке молибденовых ренийсодержащих концентратов. На Усть-Каменогорском свинцово-цинковом комбинате теллур полупроводниковой чистоты получают с применением жидкостной экстракции.

В более крупных масштабах экстракция используется при получении вольфрамового ангидрида. На Нальчикском гидрометаллургическом заводе объем переработки вольфрамовых растворов экстракцией составлял 165000 м3 в год; в настоящее время объем переработки снизился до 45000 тыс. м3.

На Норильском горно-металлургическом комбинате и комбинате “Североникель” действуют экстракционные установки по получению кобальта повышенной чистоты. Ведутся проектные работы по переходу на этих комбинатах к гидрометаллургии никеля с использованием экстракции для разделения металлов.

На Челябинском цинковом заводе нашли применение новые флокулянты для повышения степени очистки сточных вод до требований санитарно-бытового и рыбохозяйственного водопользования.

Технологии очистки газов

Эти технологии предназначены для очистки газов металлургических и химических производств от оксидов серы.

Для переработки отходящих газов металлургических печей разработана технология получения серы, основанная на восстановлении сернистого ангидрида природным газом или углем. После конденсации серы восстановленные газы, содержащие сероводород, дорабатываются методом Клауса. Технология отработана на Норильском горно-металлургическом комбинате.

Разработаны принципиально новые методы очистки газов с помощью пучка ускоренных электронов и высокочастотного стримерного разряда.

Подавление выделения аэрозолей в электролизных цехах

Разработаны специальные добавки к растворам электролитов для получения катодных меди, никеля, цинка. Они подавляют выделение из ванн аэрозолей электролитов, а также способствуют улучшению качества катодных металлов. Промышленное применение данного метода, в частности, осуществлено в производстве электрорафинированного никеля на Норильском горно-металлургическом комбинате.

Среди работ направленных на решение экологических проблем можно отметить перевод соединений мышьяка в труднорастворимые соединения. Предложен новый способ глубокой очистки растворов от мышьяка, обеспечивающий ПДК. Он основан на получении арсената гидроксижелеза, растворимость которого 0,03 мг/л.

Получение высокочистых металлов

При получении металлов высокой чистоты используют, как правило, сочетание различных методов: дистилляцию в вакууме, зонную перекристаллизацию, переосаждение, фракционированное восстановление восстановительными газами, перегонку в токе водорода, электрорафинирование в расплавах и др. Контроль чистоты полученных металлов осуществляют атомно-эмиссионной спектроскопией с индуктивно связанной плазмой.

Разработанные методы обеспечивают получение металлов высокой чистоты: цинка (99,998), теллура (99,9999), индия (99,9999), висмута (99,999), сурьмы (99,99) и др.

металлургия нанотестер карусельный печь

Размещено на Allbest.ru

...

Подобные документы

    Характеристика основных технологий в черной и цветной металлургии. Классификация металлургических процессов. Сырье для черной металлургии и его добычи. Продукты металлургического производства. Дуговые электроплавильные печи, конвертеры, прокатные станы.

    курсовая работа , добавлен 16.10.2010

    Металлургический комплекс России: чёрная металлургия, цветная металлургия. Структура черной металлургии. Системы технологий и промышленное производство цветной металлургии. Олово: классификация, свойства, сплавы и применение олова в других отраслях.

    контрольная работа , добавлен 22.10.2007

    Обжиговые печи черной металлургии. Рациональная конструкция печи. Принцип действия и устройство шахтных печей. Способы отопления и режимы обжига в шахтных печах. Аэродинамический режим печи. Особенности теплообмена в слое. Шахтные и обжиговые печи.

    курсовая работа , добавлен 04.12.2008

    Тепловая работа шахтных печей цветной металлургии. Плавка кусковой руды, брикетов, агломерата и различных промежуточных продуктов металлургического производства. Шахтные печи с режимом работы на базе топочного процесса. Особенности теплообмена в слое.

    курсовая работа , добавлен 04.12.2008

    Горизонтальные конверторы с верхним отводом газов. Конструкция конвертеров цветной металлургии. Расчет основных параметров и теплового баланса конверторов цветной металлургии. Тепловой баланс конвертора. Вертикальные конверторы. Производительность.

    дипломная работа , добавлен 29.10.2008

    Высокая эффективность использования кислорода в металлургии, конвертерная выплавка стали. Специфика кислородного дутья в доменных печах и особенности электросталеплавильного производства. Интенсификация процессов обжига сырья в цветной металлургии.

    презентация , добавлен 28.12.2010

    Стационарные и качающиеся мартеновские печи и их конструкция. Верхнее и нижнее строение печи. Рабочее пространство. Кладка мартеновской печи. Тепловая работа. Период заправки печи, завалки, нагрева, плавления металлической части шихты, доводки.

    дипломная работа , добавлен 04.12.2008

    Добыча, обогащение руд цветных металлов и выплавка цветных металлов и их сплавов. Цветная металлургия как отрасль национальной экономики. Основные факторы и условия функционирования и развития цветной металлургии в стране. Доля России на мировом рынке.

    презентация , добавлен 31.05.2014

    Совокупность методов изготовления порошков металлов и сплавов. Преимущества порошковой металлургии. Изготовление пористых материалов. Получение материалов высокой чистоты. Использование продукции порошковой металлургии в других отраслях промышленности.

    презентация , добавлен 07.02.2011

    Создание безотходной по материалам и энергии технологии как признак идеальной организации производства. Классификация вторичных энергоресурсов (ВЭР) по виду энергии: горючие, тепловые и избыточного давления. Способы использования ВЭР черной металлургии.

На сегодняшний день почти каждая отрасль промышленности, так или иначе, потребляет стали и сплавы на их основе. В этой связи черная металлургия является одной из ключевых в промышленности, ее инновационное развитие стимулирует развитие в таких отраслях, как: машиностроение, строительство, мостостроение, судостроение и т.д.

В состав черной металлургии входят следующие основные подотрасли:

Добыча и обогащение руд черных металлов;

Добыча и обогащение нерудного сырья для черной металлургии (флюсовых известняков, огнеупорных глин, добавочных материалов и т. п.);

Производство черных металлов (чугуна, сталей и сплавов, проката, металлических порошков черных металлов); - производство стальных и чугунных труб;

Коксохимическая промышленность;

Вторичная переработка черных металлов (лома и отходов).

В последнее время в развитии черной металлургии наблюдаются негативные тенденции. Развитие общемировой отрасли черной металлургии до настоящего времени во многом было обусловлено интенсивным развитием экономики Китая. На фоне замедления развития экономики за период с 2012 по 2014 годы наблюдалось стагнация развития мировой отрасли черной металлургии. Если данная тенденция сохранится, то возникнет проблема глобального уровня, связанная со снижением темпов развития мировой черной металлургии.

Как же бороться с негативными тенденциями в черной металлургии, как повысить конкурентоспособность данного конкретного сталелитейного предприятия?

Дерево эволюции.

Основным видом производственной деятельности предприятий черной металлургии является производство металла, остальные виды деятельности можно отнести к вспомогательным. Прежде всего, давайте рассмотрим, какую продукцию производят предприятия черной металлургии, для чего построим дерево эволюции выпускаемой продукции (рис. 1).

Самый простой и дешевый продукт - это сляб, огромный кусок стали, который требует дальнейшей обработки перед отправкой потребителю.

Какие тенденции развития просматриваются здесь?

Прежде всего - дробление одного большого куска металла на несколько более мелких частей. При этом толстые и более тонкие листы металла, полоса, рулонная лента и фольга. То есть, мы здесь наблюдаем дробление материала при сохранении его формы, разделение сляба по его толщине.

Дробление сляба может быть выполнено путем разделения его по ширине. В таком случае мы получаем квадратный профиль, что-то вроде толстых металлических стержней. Следующий шаг - разделение на большее количество частей, получение прутков, толстой и тонкой проволоки.

Рис.1. Дерево эволюции сталелитейной продукции (исходный вариант)

Финальным шагом по линии дробления будет жидкий металл, то есть расплав, который без дальнейшей переработки используется для изготовления нужных деталей путем литья в формы.

Это основная часть, ствол дерева продукции черной металлургии.

Линии эволюции можно проследить практически для каждого из вариантов производимой продукции.

Так, для полосы можно построить линию геометрической эволюции , описывающую усложнение формы полосы и получение новых геометрических структур (рис.2). Это структуры, которые могут быть получены простым сгибанием: уголок, швеллер, различные желоба и S-образные профили и другие изделия, имеющие в сечении самый разный профиль. Развитием этого направления могут служить замкнутые структуры: квадратные и круглые трубы, трубы со сложным профилем в сечении и т.п. Следующий этап развития плоской полосы - это трехмерные оболочковые конструкции, из которых могут быть получены самые различные изделия, например, колена для трубопроводов, тройники, корпуса запорной и регулирующей арматуры и т.п.

Рис.2. Геометрическая эволюция изделий из листовой стали

Следующая линия - моно-би-поли (рис.3). Если посмотреть на главный и основной продукт черной металлургии - сляб, то можно заметить, что при его производстве получаются дополнительные продукты, которые могут быть использованы как товар. Это, прежде всего, шлак. При производстве тонны стали получается около ХХХ килограмм шлака, который может быть использован для самых разных целей. Кроме того, получается большое количество воды, которая широко используется в производственном процессе для охлаждения обрабатываемого металла. Сбросовые воды имеют высокую температуру и несут в себе прибавочную стоимость, которая может быть использована для получения прибыли. То есть, здесь мы видим линию развития моно-би-поли различных компонентов, согласно которой можно проследить развертывание количества полезных продуктов, получаемых при производстве стали.

Рис.3. Моно-би-поли полезных продуктов при производстве стали

Еще одну линию, эволюция внутренней структуры , можно построить, если рассмотреть микроструктуру производимой стали. Это зерна кристаллов, как правило, разных размеров, расположенные хаотично в толще материала (рис.4).

Один из вариантов этой линии показывает упорядочивание размеров и расположения зерен микрокристаллов. Такое упорядочивание может происходить в двух направлениях - как в сторону равномерного, изотропного, распределения атомов вещества, так и в сторону повышения анизотропии материала, когда кристаллы распределяются в определенном порядке, а их форма повышает механическую прочность стали.

Изотропная, так называемая «стеклянная», сталь имеет аморфную структуру. В отличие от стандартных металлов, где атомы находятся в определенном порядке, в твердых аморфных веществах, к примеру, стекле, атомы размещаются хаотично. Такое расположение атомов дает «стеклянной стали» необыкновенную прочность при любых нагрузках.

Рис.4. Эволюция внутренней структуры стали

Другое направление структуризации заключается в упорядочивании кристаллов стали. Например, аустенитные стали имеют не только более упорядоченную микроструктуру, но и сохраняют ее неизменной в большом диапазоне температур, что придает аустенитной стали особые прочностные и антикоррозионные свойства.

Это направление развивается в сторону дополнительного ориентирования микрокристаллов, то есть в придании материалу свойства анизотропии. Так в стали для формования лопаток турбин самолетных двигателей предусмотрено ориентирование продолговатых кристаллов вдоль некоторой оси. Такая сталь, как любой анизотропный материал, исключительно хорошо работает при определенных нагрузках, например, при изгибе и растяжении вдоль оси ориентации кристаллов.

Наиболее подходящая структура для лопаток турбин - это монокристалл, то есть когда вся лопатка представляет собой молекулярную структуру с кристаллической решеткой.

На рисунке 5 представлены различные варианты лопаток: из обычной стали, с продольно ориентированными кристаллами и монокристаллическая. Очевидно, что лопатка с ориентированными кристаллами и монокристаллическая имеют гораздо большую прочность по сравнению с обычной.

Рис. 5. Лопатки турбины

Еще одно направление структуризации стальных изделий заключается в том, что материалу придают разные свойства в его глубине и слое, приближенном к поверхности. Для этого применяются разные способы: закалка, науглероживание поверхностного слоя, механический наклёп и т.п. Упрочненная сталь, мягкая внутри, имеет высокую твердость поверхностных слоёв.

Обратный пример - режущий элемент экскаваторного ковша выполняют так, что внутри расположена твердая сталь, а по бокам - более мягкая. Такой зуб, выполненный по образцу резцов бобра, имеет свойство самозатачиваться (рис.6).

Рис.6. Самозатачивающийся зуб

Что касается листовой стали, то структуризация материала происходит путем добавления слоев. Здесь прослеживается линия моно-би-поли различных компонентов , которая заключается, прежде всего, в том, что на поверхность листа наносят различные покрытия (рис.7). Самое простое покрытие - это воронение поверхности листа или иной детали, при котором на поверхности стали образуется слой окислов железа.

Рис.7. Моно-би-поли слоёв покрытия

Наиболее распространенное покрытие - слой цинка, который создает преграду коррозии. Слой цинка может быть модифицирован, прежде всего, добавкой магния и алюминия, что значительно повышает его антикоррозионные свойства.

Вдобавок к нанесению покрытия слой цинка часто пассивируется, то есть, на его поверхности формируется дополнительный защитный слой из пленки оксидов, получаемых при действии окислителей на основе хрома. Этот процесс называется хроматированием.

Рис.8. Многослойный оцинкованный лист с полимерным покрытием

В дополнение к металлическим на лист наносятся и полимерные покрытия. Так для производства металлочерепицы и профилированного листа на цинковое покрытие наносят последовательно слой грунта, полимерный слой и покрывают многослойный лист специальным защитным лаком.

Такой многослойный лист находит большой спрос при строительных работах и изготовлении конструкций, работающих в агрессивной среде.

При производстве металлических изделий активно преобразуется такой атрибут, как их поверхность. Например, при производстве строительной арматуры можно проследить линию эволюция поверхности (рис.9). Винтовые нарезки, ортогональные выступы, наклонные выступы, звездочки, чередование выступов и впадин - различная форма поверхности дает возможность выбрать самый подходящий тип арматуры.

Рис.9. Эволюция поверхности прутка (на примере арматуры)

Конечно, мы не охватили в нашем дереве всё разнообразие выпускаемых металлургическими комбинатами стальных изделий. Это далеко выходит за рамки данной статьи. Но давайте попробуем провести простой анализ нашего дерева и поискать интересные направления развития сталелитейной промышленности.

Получается следующее:

  • Металлургические комбинаты выпускают изделия давно устоявшейся номенклатуры, которые, тем не менее, находят спрос у потребителя.
  • В тоже время ведется выпуск и новых, инновационных изделий, спрос на которые еще не сформировался полностью, и находится в режиме ожидания.

Традиционная продукция.

Если говорить о выпуске привычных, стандартных изделий, то здесь стоит две задачи - снижение затрат на производство единицы продукции и повышение качества выпускаемой продукции. Как первая, так и вторая проблема требуют решения большого количества изобретательских задач, создания инновационных технологических процессов. Здесь открывается широкое поле деятельности для специалистов по решению изобретательских задач на основе методик ТРИЗ.

В этой связи интересен опыт южнокорейской металлургической компании ПОСКО. 4-я в мире компания-производитель стали начала применять ТРИЗ в 2006 году. Была сформирована команда специалистов, имеющих опыт решения изобретательских задач. В течение нескольких лет команда показала принципиальную возможность и высокую результативность решения неразрешимых на первый взгляд задач в области металлургии.

Это были задачи, связанные со следующими процессами:

  • Устранение проблем при выплавке стали и повышение надежности технологического процесса.
  • Повышение качества проката при непрерывной разливке стали.
  • Производство проката, в первую очередь тонколистового, соединение заготовок, устранение проблем с охлаждением и деформацией листа.
  • Хранение и транспортировка руды и угля.
  • Утилизация и переработка шлака.
  • Разработка новых продуктов, прогнозирование развития технологий.

Только в 2010 году использование ТРИЗ принесло компании ПОСКО 277 млн. долларов США. Для примера, в 2010 было получено в 2,4 раза больше патентов, чем в 2009.

На основе накопленного опыта ПОСКО создала методологию разработки новой продукции и снижения затрат «PRIZM», основанную на ТРИЗ. В компании был организован корпоративный университет ТРИЗ, где прошли обучение 1800 сотрудников (10% всей численности).

Именно ТРИЗ выбрана в качестве основного инструмента для осуществления новой инновационной концепции POSCO 3.0.

Как выразился СЕО компании:

“TRIZ is a tool that allows you to leap forward to become a true global leader, and the POSCO Family is also gathering its efforts to fully utilize TRIZ since last year.”

Повседневная инновационная работа, основанная на ТРИЗ, позволяет устранить актуальные технологические проблемы. Что еще важнее, именно систематизация изобретательства дает возможность выявить скрытые проблемы компании, решение которых позволяет повысить качество продукции, поднять производительность и снизить затраты на производство.

Инновационная продукция.

Выпуск новой, инновационной продукции, прежде всего, предусматривает новые рынки сбыта. Глобальной проблемой сейчас можно считать переизбыток производственных мощностей в мировой черной металлургии, что до предела обостряет конкурентную борьбу за потребителя. Успеха в конкуренции можно достичь, увеличивая долю производства стальной продукции глубокой степени переработки (высших переделов). Успех будет иметь компания, которая не только спрогнозирует новые рынки сбыта, но и будет активно работать над их созданием.

Давайте проанализируем дерево эволюции и посмотрим, какие направления развития продукции черной металлургии оно показывает.

Одно из направлений развития получается, если продолжить линию структуризации материала. Развивая технологию направленной кристаллизации можно предположить, что управление ориентированием и формой кристаллов стали даёт новые возможности для повышения прочности и снижения массы стальных деталей. Технология, применяемая для создания лопаток турбин, может и должна быть распространена на другие виды инновационной продукции. Это позволить снизить материалоемкость изделий при повышении их надежности.

Еще одно направление - производство специальных сталей для интенсивно развивающихся отраслей промышленности.

Например, сейчас в мире активно развивается солнечная и ветровая энергетика. Можно предвидеть повышенный спрос на материалы, применяемые для производства солнечных батарей и ветродвигателей. Конечно, это могут быть сравнительно простые конструкционные стали, но этого однозначно недостаточно для обеспечения устойчивого сбыта. Гораздо больший эффект может дать применение продукции черной металлургии для создания самих солнечных батарей или ветродвигателей. Замена дефицитных и дорогих материалов сталями и сплавами позволяет не только найти новые рынки сбыта, но и удешевить сами изделия. Это, в свою очередь, даёт дополнительное расширение рынков.

Батареи из аморфного кремния производят напылением множества тончайших слоев материала на гибкую основу, обычно стальную ленту-фольгу. Потом её режут на отдельные фотоэлементы, выводят электроды и далее, готовые фотоэлементы спаивают в батарею и ламинируют с двух сторон гибкими пластиковыми пленками. Готовое изделие легко гнется и не боится ударов (рис.10).

Рис.10. Гибкая солнечная батарея на основе стальной фольги

Ряд компаний уже сейчас активно работает над созданием и усовершенствованием солнечных батарей на основе стальной фольги. Это та же корейские компании САМСУНГ, LG, SK. Интересно, что к разработке солнечных батарей на стальной основе активно подключилась и сталелитейная компания ПОСКО. Казалось бы, разработка батарей лежит в стороне от главной деятельности компании, но широкое внедрение в их конструкцию стали открывает дополнительный рынок сбыта для продукции.

Развитие солнечной энергетики открывает широкий спектр возможностей для продукции черной металлургии. Мы уже говорили о замене в солнечных батареях дефицитных и дорогих металлов сталями и сплавами. Еще одно перспективное направление - создание солнечных термальных электростанций (гелиоконцентраторов). Такая станция представляет собой колонну с емкостью, в которой находится трубка-коллектор с жидким теплоносителем (дистиллированная вода, масло или солевой расплав). Колонна окружена большим количеством зеркал, которые концентрируют солнечный свет на емкости, нагревая находящееся там вещество до высокой температуры. В линии фокуса параболы под воздействием отраженных лучей коллектор нагревается до 350 - 700°С, а теплоноситель «смывает» тепловую энергию с его стенок на теплообменник ТЭС или в тепловой аккумулятор (рис.11).

Здесь просматривается возможность изготовления зеркал из стальных пластин с полированной поверхностью. Солнечные термальные станции уже достаточно эффективны, и изготовление элементов их конструкций может стать новым рынком для сталелитейных компаний.

Рис.11. Гелиотермальная электростанция

Дерево эволюции показывает, что повышение спроса на продукцию черной металлургии может быть обеспечено повышением согласования номенклатуры выпускаемой продукции с запросами конечных потребителей. Например, для кораблестроительных компаний можно поставлять плоские стальные листы, а можно, по согласованию с формой будущего корабля, сразу формовать панели, которые останется только приварить по месту. Сейчас, в эпоху компьютеризации конструкторской работы, формовку криволинейных панелей корпуса корабля гораздо проще сделать на сталелитейной компании, чем разрабатывать для этого дополнительную технологию. То есть, речь идет о максимально полной переработке исходного сырья, что позволит компании получить дополнительную прибыль.

Здесь может возникнуть вопрос: самое дорогое при прессовании - это изготовление пресс-форм. А для изготовления различных изделий требуются детали самой разной формы, так что, металлургическая компания должна иметь бесконечное множество пресс-форм?

Это задача, изобретательская задача, которая может быть поставлена и решена при помощи методик ТРИЗ.

Если посмотреть линии структуризации материала и моно-би-поли слоев металла, можно сделать следующий вывод. Потребители продукции черной металлургии все активнее используют структурированные материалы, проблема заключается лишь в сложности их получения.

Здесь можно использовать такую технологию, как сварка взрывом, которая дает возможность соединять на молекулярном уровне самые разные материалы: сталь и медь, сталь и алюминий и т.п., получая структурированный материал с уникальными свойствами (рис.12).

Рис.12. Сварка взрывом

Сварка взрывом - очень эффективный способ обработки металла, эта технология хорошо проработана для соединения плоских листов. Применительно к черной металлургии просматривается возможность применение сварки взрывом для получения объемных деталей со сложной структурой. При этом дополнительные слои материала могут размещаться как на внешней стороне детали, так и в ее полостях. Например, таким образом можно изготавливать двух или многослойные трубопроводы для перекачки агрессивных жидкостей, детали из дешевого алюминиевого сплава, покрытые высокопрочной сталью, стальные электрические проводники с медным наружным слоем и т.п.

Компания, которая хочет получить прибыль, должна исследовать рынок и прорабатывать потенциальные возможности замены существующей продукции, особенно цветных металлов, сталями и их сплавами. Например, на изготовление тех же проводников тратится гигантское количество дефицитной меди. А ведь делать сплошной медный проводник нет никакого смысла - ведь ток идет только по его поверхностному слою. Если же заместить хотя бы часть рынка сплошных медных проводников стальными проводниками с медным покрытием, это даст огромный рынок сбыта продукции металлургических компаний.

Кроме более агрессивного выхода на уже существующие рынки сбыта, сталелитейная компания должна отслеживать появление новых перспективных технологий и понимать тенденции их развития. Так, одно из перспективных направлений развития черной металлургии - порошковая металлургия. Производство порошков для формования деталей - важный рынок сбыта. Однако недостаточно только следовать запросам рынка при производстве и продаже порошков. Металлургическая компания может активно влиять на развитие этого рынка, если будет вкладываться в совершенствование этой технологии. Увеличения прибылей сталелитейной компании можно ожидать, если объединить в ее рамках, как изготовление порошков, так и производство деталей из них, поставляя на рынок сразу готовые изделия. Конечно, это предполагает более тесное согласование с потребителями конечной продукции и непосредственное участие в разработке новых технологий.

Еще одно направление, которое активно развивается в последнее время, это трёхмерная печать готовых деталей. З-D принтеры обеспечивают недостижимую другими способами точность, сводя к минимуму дополнительную обработку деталей (рис.13). Сейчас для трехмерной печати применяются, в основном, пластики и металлы с низкой температурой плавления. Однако в печати появляются сообщения о том, что для трехмерной печати может применяться и сталь. Технологии развиваются очень быстро, и не успеем оглянуться, как трехмерная печать сталью станет привычным способом получения деталей машин.

Рис.13. Напечатанная стальная структура

Уже сейчас успешно развивается технология 3D-печати SLM (Selective Laser Melting или метод селективного лазерного плавления). В процессе 3D-печати гранулированный стальной порошок распределяется тонким слоем (от 20 μm — 75 μm и до 100 μm) на платформе, которая опускается по вертикали, а печать изделия производится с использованием двойного лазерного луча, расплавляющего порошок слой за слоем, превращая его в однородную металлическую массу. Процедура происходит в закрытой камере с инертными газами (рис. 14).

Рис. 14. Схема принтера 3D-печати по SLM технологии

Маленький трехмерный принтер может стать тем локомотивом, который вытянет к новым рыночным нишам те компании, которые вовремя увидят появление новой технологии и поймут ее возможности для расширения собственного бизнеса.

Вообще, более полное согласование с запросами конечного потребителя - это эффективный путь повышения прибыли предприятий черной металлургии.

Еще один источник дохода сталелитейной компании можно найти, если принять во внимание, что кроме стали и сплавов при производстве стальных изделий образуются и другие продукты, например, шлак и горячая вода.

Шлак широко применяется в строительстве: гранулированный шлак используют для получения шлако-портландцемента, в качестве заполнителя для бетонов, в дорожном строительстве, из шлаковых расплавов вырабатывают минеральную вату, шлаковую пемзу, стекло и стеклокристаллические материалы (шлакоситаллы). Многообещающе использование шлака для получения отливок деталей машин, строительных элементов и т.п. Высокие физико-механические свойства литых каменных и шлаковых изделий позволяют применять их для ответственных конструкций, работающих в тяжелых условиях интенсивного истирания, воздействия агрессивных сред, многократного замораживания и оттаивания.

Представляется целесообразным проведение исследовательских работ по повышению прочности шлакового литья. Например, армирование объемных деталей или покрытие их сталью позволит получить недорогие изделия с высокими прочностными характеристиками.

Шлаки имеют сложный и разнообразный химический состав (встречается до 30-ти химических элементов), что дает возможность добывать полезные элементы для получения дополнительной прибыли.

Горячая вода также может быть использована для растениеводства и рыбоводства в условиях низких температур, получения электроэнергии из бросового тепла и других целей. Интересно, что в некоторых минералогических условиях вода после охлаждения шлака приобретает целебные свойства и может быть использована для лечения различных заболеваний.

Разумеется, в короткой статье невозможно описать все перспективные направления развития продукции черной металлургии. Это большая работа, которую должна проводить сама компания, если она хочет стать лидером в мировой конкуренции.

Один из главных постулатов ТРИЗ гласит:

«Количество ресурсов не ограничено, нужно только увидеть их и правильно использовать».

Это в полной мере справедливо и для черной металлургии.

Важность патентования.

Отслеживать появление новых инновационных технологий, осваивать выпуск новой, инновационной продукции очень важно для металлургической компании, но совершенно недостаточно. Если компания рассчитывает выходить на международные рынки и закрепиться на них, то необходима серьезная работа по созданию, усовершенствованию и патентной защите новых материалов и технологий.

Лучший подход для металлургической компании - как консолидация с другими производителями стали, образование консорциумов, позволяющих концентрировать средства на исследования. Такой консорциум уже может организовывать тесное сотрудничество с компаниями, разработчиками новых технологий.

Важно организовать научно-исследовательскую работу, а также выявление и решение изобретательских задач на всех этапах разработки и производства новых продуктов и инновационных технологий. Это значит, что должна быть организована систематическая работа по решению возникающих задач и созданию новых технологических процессов. Здесь можно вспомнить так называемую «стеклянную сталь», совершенно новый материал с уникальными свойствами. Понадобилось несколько лет, чтобы специалисты нашли путь к широкому производству. Временной отрезок, который заняли исследования, мог бы быть гораздо короче, если бы в металлургической отрасли модернизация в целом и наука в честности занимали достойное место в планируемом бюджете.

Здесь важную помощь может оказать ТРИЗ, поскольку применение ее методик дает возможность систематично организовать инновационный процесс и обеспечить устранение возникающих проблем.

Какие выводы мы сделаем из нашего краткого анализа:

  1. Дерево эволюции показывает, что увеличение прибыли компании обеспечивается снижением затрат на производство традиционной продукции и повышением ее качества.
  2. Для повышения качества продукции и снижения затрат передовые сталелитейные компании, например, ПОСКО, активно и эффективно применяют ТРИЗ.
  3. Важным направлением развития выпускаемой продукции является более полное согласование параметров выпускаемой продукции и требований конечного потребителя.
  4. Для более полного согласования металлургическая компания должна добиваться высокой степени переработки исходного сырья, в идеале поставляя потребителю готовые изделия, не требующие дальнейшей обработки.
  5. Металлургическая компания должна отслеживать появление новых технологий получения изделий из металла, и активно участвовать в создании перспективных технологий и в совершенствовании традиционных.
  6. Ключевым направлением развития металлургии станет разработка, патентование и производство материалов для 3D-печати.
  7. Для решения изобретательских задач, возникающих при работе с новыми материалами и технологиями большой эффект дает применение ТРИЗ.
  8. Для конкуренции на международном рынке металлургическая компания должна занимать агрессивную патентную политику, т.е. патентовать как создаваемые материалы, так и новые технологии.