Основные способы управления частотным электроприводом. Принципы векторного управления асинхронным двигателем Векторная система управления асинхронным двигателем

Дмитрий Левкин

Скалярное управление (частотное) - метод управления бесщеточным переменного тока, который заключается в том, чтобы поддерживать постоянным отношение напряжение/частота (В/Гц) во всем рабочем диапазоне скоростей, при этом контролируется только величина и частота питающего напряжения.

Отношение В/Гц вычисляется на основе номинальных значений ( и частоты) контролируемого электродвигателя переменного тока. Поддерживая постоянным значение отношения В/Гц мы можем поддерживать относительно постоянным магнитный поток в зазоре двигателя. Если отношение В/Гц увеличивается тогда электродвигатель становится перевозбужденным и наоборот если отношение уменьшается двигатель находится в недовозбужденном состоянии.


Изменение напряжения питания электродвигателя при скалярном управлении

На низких оборотах необходимо компенсировать падение напряжения на сопротивлении статора, поэтому отношение В/Гц на низких оборотах устанавливают выше чем номинальное значение. Скалярный метод управления наиболее широко используется для управления асинхронными электродвигателями.

В применении к асинхронным двигателям

При скалярном методе управления, скорость контролируется установкой величины напряжения и частоты статора, таким образом, чтобы магнитное поле в зазоре поддерживалось на нужной величине. Для поддержания постоянного магнитного поля в зазоре, отношение В/Гц должно быть постоянным на разных скоростях.


При увеличении скорости напряжение питания статора так же должно пропорционально увеличиваться. Однако синхронная частота асинхронного двигателя не равна частоте вращения вала, а зависит от нагрузки. Таким образом система контроля со скалярным управлением без обратной связи не может точно контролировать скорость при наличии нагрузки. Для решения этой задачи в систему может быть добавлена обратная связь по скорости, а следовательно и компенсация скольжения .


Недостатки скалярного управления

    Метод скалярного управления относительно прост в реализации, но обладает несколькими существенными недостатками:
  • во-первых, если не установлен датчик скорости нельзя управлять скоростью вращения вала , так как она зависит от нагрузки (наличие датчика скорости решает эту проблему), а вслучае с при изменении нагрузки - можно совсем потерять управление;
  • во-вторых, нельзя управлять . Конечно, эту задачу можно решить с помощью датчика момента, но стоимость его установки очень высока, и будет скорее всего выше самого электропривода. При этом управление моментом будет очень инерционным;
  • также нельзя управлять одновременно моментом и скоростью.

Скалярное управление достаточно для большинства задач в которых применяется электропривод с диапазоном регулирования частоты вращения двигателя до 1:10.

Когда требуется максимальное быстродействие, возможность регулирования в широком диапазоне скоростей и возможность управления моментом электродвигателя используется .

Дмитрий Левкин

Главная идея векторного управления заключается в том, чтобы контролировать не только величину и частоту напряжения питания, но и фазу. Другими словами контролируется величина и угол пространственного вектора . Векторное управление в сравнении со обладает более высокой производительностью. Векторное управление избавляет практически от всех недостатков скалярного управления.

    Преимущества векторного управления:
  • высокая точность регулирования скорости;
  • плавный старт и плавное вращение двигателя во всем диапазоне частот;
  • быстрая реакция на изменение нагрузки: при изменении нагрузки практически не происходит изменения скорости;
  • увеличенный диапазон управления и точность регулирования;
  • снижаются потери на нагрев и намагничивание, повышается .
    К недостаткам векторного управления можно отнести:
  • необходимость задания параметров ;
  • большие колебания скорости при постоянной нагрузке;
  • большая вычислительная сложность.

Общая функциональная схема векторного управления

Общая блок-диаграмма высокопроизводительной системы управления скорости переменного тока показана на рисунке выше. Основой схемы являются контуры контроля магнитного потокосцепления и момента вместе с блоком оценки, который может быть реализован различными способами. При этом внешний контур управления скоростью в значительной степени унифицирован и генерирует управляющие сигналы для регуляторов момента М * и магнитного потокосцепления Ψ * (через блок управления потоком). Скорость двигателя может быть измерена датчиком (скорости / положения) или получена посредством оценщика, позволяющего реализовать .

Классификация методов векторного управления

Начиная с семидесятых годов двадцатого века было предложено множество способов управления моментом. Не все из них нашли широкое применение в промышленности. Поэтому, в данной статье рассматриваются только самые популярные методы управления. Обсуждаемые методы контроля момента представлены для систем управления и с синусоидальной обратной ЭДС.

Существующие методы управления моментом могут быть классифицированы различным способом.

    Чаще всего методы управления моментом разделяют на следующие группы:
  • линейные (ПИ, ПИД) регуляторы;
  • нелинейные (гистерезисные) регуляторы.
Метод управления Диапазон регулирования скорости Погрешность скорости 3 , % Время нарастания момента, мс Пусковой момент Цена Описание
1:10 1 5-10 Не доступно Низкий Очень низкая Имеет медленный отклик при изменении нагрузки и небольшой диапазон регулирования скорости, но при этом прост в реализации.
>1:200 2 0 Высокий Высокая Позволяет плавно и быстро управлять основными параметрами двигателя - моментом и скоростью. Для работы данного метода требуется информация о положении ротора.
>1:200 2 0 Высокий Высокая Гибридный метод, разработанный для того чтобы объединить преимущества и .
>1:200 2 0 Высокий Высокая Имеет высокую динамику и простую схему, но характерной особенностью его работы являются высокие пульсации тока и момента.
>1:200 2 0 Высокий Высокая Имеет частоту переключения инвертора ниже чем у других методов и предназначен для уменьшения потерь при управлении электродвигателями большой мощности.

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Среди векторного управления наиболее широко используются (FOC - field oriented control) и (DTC - direct torque control).

Линейные регуляторы момента

Линейные регуляторы момента работают вместе с широтно-импульсной модуляцией (ШИМ) напряжения. Регуляторы определяют требуемый вектор напряжения статора усредненный за период дискретизации. Вектор напряжения окончательно синтезируется методом ШИМ, в большинстве случаев используется пространственно векторная модуляция (ПВМ). В отличие от нелинейных схем управления моментом, где сигналы обрабатываются по мгновенным значениям, в линейных схемах контроля момента, линейный регулятор (ПИ) работает с значениями усредненными за период дискретизации. Поэтому частота выборки может быть уменьшена с 40 кГц у нелинейных регуляторов момента до 2-5 кГц в схемах линейных регуляторов момента.

(ПОУ, англ. field oriented control, FOC) - метод регулирования, который управляет бесщеточным переменного тока ( , ), как машиной постоянного тока с независимым возбуждением, подразумевая, что поле и могут контролироваться отдельно.

Полеориентированное управление, предложенное в 1970 году Блашке и Хассе основано на аналогии с механически коммутируемым . В этом двигателе разделены обмотки возбуждения и якоря, потокосцепление контролируется током возбуждения , а момент независимо управляется регулировкой тока . Таким образом, токи потокосцепления и момента электрически и магнитно разделены.


Общая функциональная схема бездатчикового полеориентированного управления 1

С другой стороны бесщеточные электродвигатели переменного тока ( , ) чаще всего имеют трехфазную обмотку статора, и вектор тока статора I s используется для контроля и потокосцепления и момента. Таким образом, ток возбуждения и ток якоря объединены в вектор тока статора и не могут контролироваться раздельно. Разъединение может быть достигнуто математически - разложением мгновенного значения вектора тока статора I s на две компоненты: продольную составляющую тока статора I sd (создающую поле) и поперечную составляющую тока статора I sq (создающую момент) во вращающейся dq системе координат ориентированной по полю ротора (R-FOC – rotor flux-oriented control) - рисунок выше. Таким образом, управление бесщеточным двигателем переменного тока становится идентичным управлению и может быть осуществлено используя инвертер ШИМ с линейным ПИ регулятором и пространственно-векторной модуляцией напряжения.

В полеориентированном управлении момент и поле контролируются косвенно посредством управления составляющими вектора тока статора.

Мгновенные значения токов статора преобразовываются к dq вращающейся системе координат с помощью преобразования Парка αβ/dq, для выполнения которого также требуется информации о положении ротора. Поле контролируется через продольную составляющую тока I sd , в то время как момент контролируется через поперечную составляющую тока I sq . Обратное преобразование Парка (dq/αβ), математический модуль преобразования координат, позволяет вычислить опорные составляющие вектора напряжения V sα * и V sβ * .


Для определения положения ротора используется либо датчик положения ротора установленный в электродвигателе либо реализованный в системе управления бездатчиковый алгоритм управления, который вычисляет информацию о положении ротора в режиме реального времени на основании тех данных, которые имеются в системе управления.

Блок-схема прямого управления моментом с пространственно векторной модуляцией с регулировкой момента и потокосцепления с обратной связью работающей в прямоугольной системе координат ориентированной по полю статора представлена на рисунке ниже. Выходы ПИ регуляторов момента и потокосцепления интерпретируются как опорные составляющие напряжения статора V ψ * и V M * в системе координат dq ориентированной по полю статора (англ. stator flux-oriented control, S-FOC). Эти команды (постоянные напряжения) затем преобразуются в неподвижную систему координат αβ, после чего управляющие значения V sα * и V sβ * поступают на модуль пространственно векторной модуляции.


Функциональная схема прямого управления моментом с пространственно векторной модуляцией напряжения

Обратите внимание, что данная схема может рассматриваться как упрощенное управление ориентированное по полю статора (S-FOC) без контура управления током или как классическая схема (ПУМ-ТВ, англ. switching table DTC, ST DTC) в которой таблица включения заменена модулятором (ПВМ), а гистерезисный регулятор момента и потока заменены линейными ПИ регуляторами.

В схеме прямого управления моментом с пространственно векторной модуляцией (ПУМ-ПВМ) момент и потокосцепление напрямую управляются в замкнутом контуре, поэтому необходима точная оценка потока и момента двигателя. В отличии от классического алгоритма гистерезисного , работает на постоянной частоте переключения. Это значительно повышает характеристики системы управления: уменьшает пульсации момента и потока, позволяет уверенно запускать двигатель и работать на низких оборотах. Но при этом снижаются динамические характеристики привода.

Прямое сомоуправление

Заявка на патент метода прямого самоуправления была подана Депенброком в октябре 1984 года . Блок схема прямого самоуправления показана ниже.

Основываясь на командах потокосцепления статора ψ s * и текущих фазовых составляющих ψ sA , ψ sB и ψ sC компараторы потокосцепления генерируют цифровые сигналы d A , d B и d C , которые соответствуют активным состояниям напряжений (V 1 – V 6). Гистерезисный регулятор момента имеет на выходе сигнал d M , который определяет нулевые состояния. Таким образом, регулятор потокосцепления статора задает отрезок времени активных состояний напряжений, которые перемещают вектор потокосцепления статора по заданной траектории, а регулятор момента определяет отрезок времени нулевых состояний напряжений, которые поддерживают момент электродвигателя в определенном гистерезисом поле допуска.


Схема прямого самоуправления

    Характерными особенностями схемы прямого самоуправления являются:
  • несинусоидальные формы потокосцепления и тока статора;
  • вектор потокосцепления статора перемещается по шестиугольной траектории;
  • нет запаса по напряжению питания, возможности инвертора используются полностью;
  • частота переключения инвертора ниже чем у прямого управления моментом с таблицей включения;
  • отличная динамика в диапазонах постоянного и ослабленного поля.

Заметьте, что работа метода прямого самоуправления может быть воспроизведена с помощью схемы при ширине гистерезиса потока 14%.

Векторное управление

Векторное управление является методом управления синхронными и асинхронными двигателями , не только формирующим гармонические токи (напряжения) фаз (скалярное управление), но и обеспечивающим управление магнитным потоком ротора. Первые реализации принципа векторного управления и алгоритмы повышенной точности нуждаются в применении датчиков положения (скорости) ротора.

В общем случае под "векторным управлением " понимается взаимодействие управляющего устройства с так называемым "пространственным вектором ", который вращается с частотой поля двигателя.

Математический аппарат векторного управления


Wikimedia Foundation . 2010 .

Смотреть что такое "Векторное управление" в других словарях:

    Калька с нем. Vektorregelung . Метод управления скоростью вращения и/или моментом электрического двигателя с помощью воздействия преобразователем электропривода на векторные составляющие тока статора электродвигателя. В русскоязычной литературе в … Википедия

    Решение задачи оптимального управления математической теории, в к рой управляющее воздействие u=u(t).формируется в виде функции времени (тем самым предполагается, что по ходу процесса никакой информации, кроме заданной в самом начале, в систему… … Математическая энциклопедия

    - (частотно управляемый привод, ЧУП, Variable Frequency Drive, VFD) система управления частотой вращения ротора асинхронного (или синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя … Википедия

    У этого термина существуют и другие значения, см. ЧПУ (значения). Эту страницу предлагается объединить с CNC. Пояснение причин и обсуждение на странице Википедия:К объединению/25 ф … Википедия

    Статор и ротор асинхронной машины 0.75 кВт, 1420 об/мин, 50 Гц, 230 400 В, 3.4 2.0 A Асинхронная машина это электрическая машина переменного тока … Википедия

    - (ДПР) деталь электродвигателя. В коллекторных электродвигателях датчиком положения ротора является щёточно коллекторный узел, он же является и коммутатором тока. В бесколлекторных электродвигателях датчик положения ротора может быть разных видов … Википедия

    ДС3 ДС3 010 Основные данные Страна постройки … Википедия

    Асинхронная машина это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины наиболее распространённые электрические… … Википедия

Для осуществления возможности регулирования момента и скорости в современных электроприводах используются следующие методы частотного управления, такие как:

  • Векторное;
  • Скалярное.

Наибольшее распространение получили асинхронные электроприводы со скалярным управлением. Его используют в приводах компрессоров, вентиляторов, насосов и прочих механизмов в которых необходимо удерживать на определенном уровне или скорость вращения вала электродвигателя (применяется датчик скорости), либо какого-то технологического параметра (к примеру, давление в трубопроводе, с применением соответствующего датчика).

Принцип действия скалярного управления асинхронным двигателем - амплитуда и частота питающего напряжения изменяются по закону U/f^n = const, где n>=1. То, как будет выглядеть данная зависимость в конкретном случае, зависит от требований предъявляемых нагрузкой электроприводу. Как правило, в качестве независимого воздействия выступает частота, а напряжение при определенной частоте определяется видом механической характеристики, а также значениями критического и пускового моментов. Благодаря скалярному управлению обеспечивается постоянная перегрузочная способность асинхронного двигателя, независящая от частоты напряжения, и все же при довольно низких частотах может произойти значительное снижение момента, развиваемого двигателем. Максимальное значение диапазона скалярного управления, при котором возможно осуществление регулирования значения скорости вращения ротора электродвигателя, без потери момента сопротивления не превышает 1:10.

Скалярное управление асинхронным двигателем довольно просто реализуется, но все же имеются два значительных недостатка. Во-первых, если на валу не установлен датчик скорости, то невозможно осуществлять регулирование значения скорости вращения вала, поскольку она зависит от воздействующей на электропривод нагрузки. Установка датчика скорости с легкостью решает данную проблему, но еще одним значительным недостатком остается – отсутствие возможности регулирования значения момента на валу двигателя. Можно конечно установить датчик момента, но стоимость подобных датчиков, как правило, превышает стоимость самого электропривода. Причем, даже если установить датчик управления моментом, то процесс управления этим самым моментом окажется невероятно инерционным. Еще одно «но» - скалярное управление асинхронным двигателем характеризуется тем, что невозможно осуществление одновременного регулирования скорости и момента, поэтому приходится осуществлять регулирование той величины, которая в данный момент времени наиболее важна в силу условий технологического процесса.

Дабы устранить недостатки, которыми обладает скалярное управление двигателем, еще в 71-м году прошлого века компанией SIEMENS было предложено внедрение метода векторного управления двигателем. В первых электроприводах с векторным управлением использовались двигатели, в которых были встроены датчики потока, что значительно ограничивало область применения подобных приводов.

Система управления современных электроприводов содержит в себе математическую модель двигателя, позволяющую рассчитать скорость вращения и момент вала. Причем в качестве необходимых датчиков устанавливаются только датчики тока фаз статора двигателя. Специально разработанная структура системы управления обеспечивает независимость и практически безынерционность регулирования основных параметров – момент вала и скорость вращения вала.

К сегодняшнему дню сформировались следующие системы векторного управления асинхронным двигателем:

  • Бездатчиковые – на валу двигателя отсутствует датчик скорости,
  • Системы, имеющие обратную связь по скорости.

Применение методов векторного управления зависит от области применения электропривода. Если диапазон измерения значения скорости не превышает 1:100, а требования, предъявляемые к точности, колеблются в пределах ±1,5%, то используется бездатчиковая система управления. Если измерение скорости осуществляется в пределах достигающих значений 1: 10000 и больше, а уровень точности должен быть довольно высоким (±0,2% при частоте вращения ниже 1 Гц), или же необходимо позиционировать вал или осуществлять регулирование момента на валу при низких частотах вращения, то применяется система, имеющая обратную связь по скорости.

Преимущества векторного метода управления асинхронным двигателем:

  • Высокий уровень точности при регулировании скорости вращения вала, несмотря даже на возможное отсутствие датчика скорости,
  • Осуществление вращения двигателя на малых частотах происходит без рывков, плавно,
  • Если установлен датчик скорости, то можно достичь номинального значения момента на валу даже при нулевом значении скорости,
  • Быстрое реагирование на возможное изменение нагрузки – резкие скачки нагрузки практически не отражаются на скорости электропривода,
  • Высокий уровень КПД двигателя, за счет сниженных потерь из-за намагничивания и нагрева.

Несмотря на очевидные преимущества, метод векторного управления имеет и определенные недостатки – большая сложность вычислений, для работы необходимо знание параметров двигателя. Помимо всего прочего колебания значения скорости при постоянной нагрузке значительно больше, нежели при скалярном методе управления. Кстати, существуют такие сферы, где используются электроприводы исключительно со скалярным методом управления. К примеру, групповой электропривод, в котором один преобразователь подпитывает несколько двигателей.

Наиболее известный метод экономии энергии – сокращение частоты вращения электродвигателя переменного тока. Поскольку мощность пропорциональна кубу скорости вращения вала, то небольшое снижение скорости может привести к значительной экономии электричества. Насколько это актуально для производства, понимает каждый. Но как этого достичь? На этот и другие вопросы мы ответим, но прежде, поговорим о видах управления асинхронными двигателями.

Электрический привод переменного тока – это электромеханическая система, которая служит основой большинству технологических процессов. Важная роль в ней принадлежит преобразователю частоты (ПЧ), отвечающему заглавную «игру главной скрипки дуэта»–асинхронного двигателя (АД).

Немного элементарной физики

Со школьной скамьи мы имеем ясное представление о том, что напряжение – это разность потенциалов между двумя точками, а частота – это величина, равная количеству периодов, которые ток успевает пройти буквально за секунду.

В рамках технологического процесса часто приходится изменять рабочие параметры сети. Для этой цели существуют преобразователи частоты: скалярный и векторный. Почему их так называют? Начнём с того, что особенные черты каждого типа становятся понятными из их названия. Вспомним основы элементарной физики и позволим себе называть ПЧ для упрощения короче. «Векторник» имеет определённое направление и подчиняется правилам векторов. «Скалярник» ничего этого не имеет, поэтому алгоритм метода управления им, естественно, очень простой. С названиями, кажется, определились. Теперь о том, как различные физические величины из математических формул связаны между собой.

Помните, что как только скорость уменьшается, вращающий момент увеличивается и наоборот? Значит, чем больше вращение ротора, тем больший поток пойдет через статор, и, следовательно,будет наводиться большее напряжение.

Тоже самое лежит в принципе действия в рассматриваемых нами системах, только в«скалярнике» управляется магнитное поле статора, а в «векторнике»играет роль взаимодействие магнитных полей статора и ротора.В последнем случае технология позволяет улучшать технические параметры работы двигательной установки.

Технические различия преобразователей

Отличий существует много, выделим самые основные, и без научной паутины слов. У скалярного (бездатчикового) частотника зависимость U/F – линейная и диапазон скоростного регулирования довольно небольшой. Кстати сказать, поэтому на низких частотах недостаёт напряжения для поддержания крутящего момента, и приходится порой настраивать вольт-частотную характеристику (ВЧХ) под рабочие условия, то же самое происходит при максимальной частоте выше 50 Гц.

При вращении вала в широком скоростном и низкочастотном диапазоне, а также выполнении требований авторегулирования момента, используют метод векторного управления с обратной связью. В этом проявляется еще одно различие: у «скалярника» обычно такой обратной связи нет.

Какие же выбрать ЧП? В применении того или другого устройства, главным образом, руководствуются сферой использования электрического привода. Однако в особых случаях выбор типа преобразователя частоты становится безвариантным. Во-первых: есть явная, заметная разница в цене (скалярные стоят намного дешевле, нет надобности в дорогостоящих вычислительных ядрах). Поэтому удешевление производства порой перевешивает в принятии решения по выбору. Во-вторых: есть сферы применения, в которых возможно только их использование, к примеру, в конвейерных линиях, где несколько электродвигателей синхронно управляются от одного (ЧРП).

Скалярный метод

Асинхронный электропривод со скалярным управлением скоростью (т. е. по ВЧХ) так и остаётся по сегодняшнее время самым распространенным. В основе метода лежит то, что скорость двигателя является функцией выходной частоты.

Скалярное управление двигателями – оптимальный выбор для случаев, когда нет переменной нагрузки, и в хорошей динамике нет также потребности. Для работы «скалярника» не требуются какие-либо датчики. При использовании рассматриваемого метода, нет необходимости в дорогостоящем цифровом процессоре, как в случае с векторным управлением.

Метод часто применяется для автоуправления , вентиляторными, компрессорными и иными агрегатами.Здесь требуется, чтобы поддерживалась или скорость вращения вала движка с применением датчика, или иной заданный показатель (к примеру, температура жидкости, контролируемая по соответствующему прибору слежения).

При скалярном управлении частотно-амплитудное изменение напряжения питания определяется по формуле U/fn = const. Это позволяет обеспечить постоянный магнитный поток в двигателе. Способ достаточно простой, легко реализуется, но не без некоторых существенных недостатков:

  • не представляется возможным одновременное регулирование моментом и скоростью, поэтому выбирается та величина, которая с технологической точки зрения самая значимая;
  • узкий диапазон скоростного регулирования и низкий момент на малых скоростях;
  • плохая работа с динамически изменяющейся нагрузкой.

А что собой представляет векторный метод?

Векторный метод

Он возник в процессе усовершенствования, и применяется при требовании реализовать максимальное быстродействие, регулирование в широком скоростном диапазоне и управляемость момента на валу.

В новейших моделях электрических приводов в систему управления (СУ) по этому типу внедряется математическая модель двигателя, которая способна рассчитать момент движка и скорость вращения вала. При этом требуется лишь установка датчиков тока фаз статора.

Сегодня обладают достаточным числом достоинств:

  • высокая точность;
  • без рывков, плавное вращение АД;
  • широкий диапазон регулирования;
  • быстрое реагирование на изменение нагрузки;
  • обеспечение рабочего режима двигателя, при коем уменьшаются потери на нагрев и намагничивание, а это ведёт к заветному увеличению КПД!

Плюсы, безусловно, очевидны, но метод векторного управления не лишён и недостатков, таких, как вычислительная многосложность и потребность в знании технических показателей АД. Помимо этого, наблюдаются большие, чем у «скалярника», амплитуды скоростных колебаний при постоянной нагрузке. Главная задача при изготовлении частотного преобразователя(«векторника») – обеспечение высокого момента при небольшой скорости вращения.

Схема векторного СУ с блоком широтно-импульсной модуляции (АИН ШИМ) выглядит примерно так:

На изображённой схеме контролируемым объектом является асинхронный двигатель, имеющий связь с датчиком (ДС) на валу. Изображённые блоки – это в действительности звенья цепи СУ, реализуемой на контроллере. Блок БЗП задаёт значения переменных. Логические блоки (БРП) и (БВП) регулируют и вычисляют переменные уравнения. Сам контроллер и другая механическая часть системы находится в электрическом шкафу.

Вариант с частотным микроконтроллером

Частотный преобразователь тока/напряжения предназначен для плавного регулирования основных величин, а также других показателей работы оборудования. Он функционирует как «скалярник» и «векторник» одновременно, используя математические модели, запрограммированные во встроенном микроконтроллере. Последний монтируется в специальный щиток и является одним из узлов информационной сети системы автоматизации.

Блочный контроллер/преобразователь частоты последнее слово техники, в схеме с ними используют дросселя и , уменьшающие интенсивность входных помех. Надо отметить, что за рубежом данному вопросу уделяется особое внимание.В отечественной же практике использование ЕМС фильтров пока остаётся слабым звеном, так как даже не существует толковой нормативной базы. Сами фильтры у нас применяются чаще там, где они не нужны, и где они действительно необходимы, про них почему-то забывают.

Заключение

Дело в том, что электродвигателю в обычном режиме работы от сети свойственно иметь стандартные параметры, это не всегда приемлемо. Устраняется сей факт путём ввода различных редукторных механизмов для снижения частоты до необходимой. На сегодня сформировались две СУ: бездатчиковая и датчиковая система с обратной связью. Их основное отличие в точности контроля. Наиболее точная, конечно, вторая.

Существующие рамки расширяются с помощью использования разных современных СУ АД, обеспечивающих повышенное качество регулирования, высокую перегрузочную способность. Для рентабельного производства, продолжительности срока службы оборудования и экономичного расхода энергии эти факторы имеют большое значение.